高级检索
当前位置: 首页 > 详情页

Autism detection based on multiple time scale model

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Xi An Jiao Tong Univ, Sch Life Sci & Technol, Xian, Peoples R China [2]Air Force Med Univ, Tangdu Hosp, Dept Radiol, Xian, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Radiol, Wuhan, Peoples R China [4]Air Force Med Univ, Sch Aerosp Med, Xian, Peoples R China
出处:
ISSN:

关键词: multiple time scale LASSO HMM LSTM detection

摘要:
Objective. Current autism clinical detection relies on doctor observation and filling of clinical scales, which is subjective and prone to misdetection. Existing autism research of functional magnetic resonance imaging (fMRI) over-compresses the time-scale information and has poor generalization ability. This study extracts multiple time scale brain features of fMRI, providing objective detection. Approach. We first use least absolute shrinkage and selection operator to build a sparse network and extract features with a time scale of 1. Then, we use hidden markov model to extract features that describe the dynamic changes of the brain, with a time scale of 2. Additionally, to analyze the features of the potential network activity of autism from a higher time scale, we use long short-term memory to construct an auto-encoder to re-encode the original data and extract the features at a higher time scale, with a time scale of T, and T is the time length of fMRI. We use recursive feature elimination for feature selection for three different time scale features, merge them into multiple time scale features, and finally use one-dimensional convolution neural network for classification. Main results. Compared with well-established models, our method has achieved better results. The accuracy of our method is 76.0%, and the area under the roc curve is 0.83, tested on completely independent data, so our method has better generalization ability. Significance. This research analyzes fMRI sequences from multiple time scale to detect autism, and it also provides a new framework and research ideas for subsequent fMRI analysis.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 3 区 工程:生物医学 3 区 神经科学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 3 区 神经科学
JCR分区:
出版当年[2020]版:
Q1 ENGINEERING, BIOMEDICAL Q1 NEUROSCIENCES
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Xi An Jiao Tong Univ, Sch Life Sci & Technol, Xian, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)