Background Nowadays, wound is associated with a complicated repairing process and still represents a significant biomedical burden worldwide. Bone marrow mesenchymal stem cells (BMSCs) possess multidirectional differentiation potential and secretory function, emerging as potential cellular candidates in treating wounds. Ascorbic acid 2-glucoside (AA2G) is a well-known antioxidant and its function in BMSC-promoting wound healing is worth exploring. Methods The in vitro cell proliferation, migration, and angiogenesis of BMSCs and AA2G-treated BMSCs were detected by flow cytometry, EDU staining, scratch assay, transwell assay, and immunofluorescence (IF). Besides, the collagen formation effect of AA2G-treated BMSCs conditioned medium (CM) on NIH-3T3 cells was evaluated by hydroxyproline, qRT-PCR and IF staining detection. Next, in the wound healing mouse model, the histological evaluation of wound tissue in PBS, BMSCs, and AA2G-treated BMSCs group were further investigated. Lastly, western blot and ELISA were used to detect the expression levels of 5-hmc, TET2 and VEGF protein, and PI3K/AKT pathway activation in BMSCs treated with or without AA2G. Results The in vitro results indicated that AA2G-treated BMSCs exhibited stronger proliferation and improved the angiogenesis ability of vascular endothelial cells. In addition, the AA2G-treated BMSCs CM enhanced migration and collagen formation of NIH-3T3 cells. In vivo, the AA2G-treated BMSCs group had a faster wound healing rate and a higher degree of vascularization in the new wound, compared with the PBS and BMSCs group. Moreover, AA2G preconditioning might enhance the demethylation process of BMSCs by regulating TET2 and up-regulating VEGF expression by activating the PI3K/AKT pathway. Conclusions AA2G-treated BMSCs promoted wound healing by promoting angiogenesis and collagen deposition, thereby providing a feasible strategy to reinforce the biofunctionability of BMSCs in treating wounds.
基金:
China Guanghua Science and Technology Foundation [2019JZXM001]; Wuhan Science and Technology Bureau [2020020601012241]
语种:
外文
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类|2 区医学
小类|2 区细胞与组织工程2 区细胞生物学2 区医学:研究与实验
最新[2025]版:
大类|2 区医学
小类|2 区细胞与组织工程2 区细胞生物学2 区医学:研究与实验
JCR分区:
出版当年[2020]版:
Q1CELL & TISSUE ENGINEERINGQ1CELL BIOLOGYQ1MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1CELL & TISSUE ENGINEERINGQ1CELL BIOLOGYQ1MEDICINE, RESEARCH & EXPERIMENTAL
第一作者单位:[1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Plast Surg, 1095 Jiefang Ave, Wuhan 430030, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
Yi Yi,Wu Min,Zhou Xiaomei,et al.Ascorbic acid 2-glucoside preconditioning enhances the ability of bone marrow mesenchymal stem cells in promoting wound healing[J].STEM CELL RESEARCH & THERAPY.2022,13(1):doi:10.1186/s13287-022-02797-0.
APA:
Yi, Yi,Wu, Min,Zhou, Xiaomei,Xiong, Mingchen,Tan, Yufang...&Zhang, Qi.(2022).Ascorbic acid 2-glucoside preconditioning enhances the ability of bone marrow mesenchymal stem cells in promoting wound healing.STEM CELL RESEARCH & THERAPY,13,(1)
MLA:
Yi, Yi,et al."Ascorbic acid 2-glucoside preconditioning enhances the ability of bone marrow mesenchymal stem cells in promoting wound healing".STEM CELL RESEARCH & THERAPY 13..1(2022)