高级检索
当前位置: 首页 > 详情页

Using deep learning to predict the outcome of live birth from more than 10,000 embryo data.

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. [2]School of Computer Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
出处:
ISSN:

关键词: Time-lapse microscopy Embryo development Embryo quality Pregnancy

摘要:
Recently, the combination of deep learning and time-lapse imaging provides an objective, standard and scientific solution for embryo selection. However, the reported studies were based on blastocyst formation or clinical pregnancy as the end point. To the best of our knowledge, there is no predictive model that uses the outcome of live birth as the predictive end point. Can a deep learning model predict the probability of live birth from time-lapse system?This study retrospectively analyzed the time-lapse data and live birth outcomes of embryos samples from January 2018 to November 2019. We used the SGD optimizer with an initial learning rate of 0.025 and cosine learning rate reduction strategy. The network is randomly initialized and trained for 200 epochs from scratch. The model is quantitively evaluated over a hold-out test and a 5-fold cross-validation by the average area under the curve (AUC) of the receiver operating characteristic (ROC) curve.The deep learning model was able to predict live birth outcomes from time-lapse images with an AUC of 0.968 in 5-fold stratified cross-validation.This research reported a deep learning model that predicts the live birth outcome of a single blastocyst transfer. This efficient model for predicting the outcome of live births can automatically analyze the time-lapse images of the patient's embryos without the need for manual embryo annotation and evaluation, and then give a live birth prediction score for each embryo, and sort the embryos by the predicted value.© 2022. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 2 区 妇产科学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 妇产科学
JCR分区:
出版当年[2020]版:
Q2 OBSTETRICS & GYNECOLOGY
最新[2023]版:
Q1 OBSTETRICS & GYNECOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)