高级检索
当前位置: 首页 > 详情页

Epithelial microRNA-30a-3p targets RUNX2/HMGB1 axis to suppress airway eosinophilic inflammation in asthma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Internal Med,Div Resp & Crit Care Med, Wuhan 430030, Peoples R China [2]Natl Hlth Commiss Peoples Republ China, Key Lab Resp Dis, Wuhan, Peoples R China [3]Natl Clin Res Ctr Resp Dis, Wuhan, Peoples R China
出处:
ISSN:

关键词: Epithelial cells miR-30a-3p Eosinophilia RUNX2 HMGB1 Asthma

摘要:
Background Type 2-high asthma is a prominent endotype of asthma which is characterized by airway eosinophilic inflammation. Airway epithelial cells play a critical role in the pathogenesis of asthma. Our previous miRNA profiling data showed that miR-30a-3p was downregulated in bronchial epithelial cells from asthma patients. We hypothesize that epithelial miR-30a-3p plays a role in asthma airway inflammation. Methods We measured miR-30a-3p expression in bronchial brushings of asthma patients (n = 51) and healthy controls (n = 16), and analyzed the correlations between miR-30a-3p expression and airway eosinophilia. We examined whether Runt-related transcription factor 2 (RUNX2) was a target of miR-30a-3p and whether RUNX2 bound to the promoter of high mobility group box 1 (HMGB1) by using luciferase reporter assay and chromatin immunoprecipitation (ChIP)-PCR. The role of miR-30a-3p was also investigated in a murine model of allergic airway inflammation. Results We found that miR-30a-3p expression were significantly decreased in bronchial brushings of asthma patients compared to control subjects. Epithelial miR-30a-3p expression was negatively correlated with parameters reflecting airway eosinophilia including eosinophils in induced sputum and bronchial biopsies, and fraction of exhaled nitric oxide in asthma patients. We verified that RUNX2 is a target of miR-30a-3p. Furthermore, RUNX2 bound to the promoter of HMGB1 and upregulated HMGB1 expression. RUNX2 and HMGB1 expression was both enhanced in airway epithelium and was correlated with each other in asthma patients. Inhibition of miR-30a-3p enhanced RUNX2 and HMGB1 expression, and RUNX2 overexpression upregulated HMGB1 in BEAS-2B cells. Intriguingly, airway overexpression of mmu-miR-30a-3p suppressed Runx2 and Hmgb1 expression, and alleviated airway eosinophilia in a mouse model of allergic airway inflammation. Conclusions Epithelial miR-30a-3p could possibly target RUNX2/HMGB1 axis to suppress airway eosinophilia in asthma.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 呼吸系统
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 呼吸系统
JCR分区:
出版当年[2020]版:
Q1 RESPIRATORY SYSTEM
最新[2023]版:
Q1 RESPIRATORY SYSTEM

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Internal Med,Div Resp & Crit Care Med, Wuhan 430030, Peoples R China [2]Natl Hlth Commiss Peoples Republ China, Key Lab Resp Dis, Wuhan, Peoples R China [3]Natl Clin Res Ctr Resp Dis, Wuhan, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Internal Med,Div Resp & Crit Care Med, Wuhan 430030, Peoples R China [2]Natl Hlth Commiss Peoples Republ China, Key Lab Resp Dis, Wuhan, Peoples R China [3]Natl Clin Res Ctr Resp Dis, Wuhan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)