高级检索
当前位置: 首页 > 详情页

Discriminating malignant from benign testicular masses using machine-learning based radiomics signature of appearance diffusion coefficient maps: Comparing with conventional mean and minimum ADC values

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Radiol,Tongji Med Coll,1095 Jiefang Rd,Wuhan 430030,Hubei,Peoples R China [2]Huazhong Univ Sci & Technol,Natl Hlth Commiss,Inst Organ Transplantat,Tongji Hosp,Key Lab Organ Transplantat,Minist Edu,Wuhan 430030,Hubei,Peoples R China [3]Chinese Acad Med Sci, Wuhan 430030, Hubei, Peoples R China [4]Julei Technol Co, Dept Artificial Intelligence, Wuhan 430030, Hubei, Peoples R China [5]Siemens Healthcare Ltd, MR Collaborat, Guangzhou, Peoples R China
出处:
ISSN:

关键词: Diffusion-weighted imaging Apparent diffusion coefficient Testicular disease Radiomics analysis

摘要:
Purpose: To develop a machine-learning-based radiomics signature of ADC for discriminating between benign and malignant testicular masses and compare its classification performance with that of minimum and mean ADC. Methods: A total of ninety-seven patients with 101 histopathologically confirmed testicular masses (70 malignancies, 31 benignities) were evaluated in this retrospective study. Eight hundred fifty-one radiomics features were extracted from the preoperative ADC map of each lesion. The mean and minimum ADC values are part of the radiomics features. Thirty lesions were randomly selected to estimate the reliability of the features. The redundant features were eliminated using univariate analysis (independent t test and Mann-Whitney U test, where appropriate) and Spearman's rank correlation. The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection and radiomics signature generation. The classification performance of the radiomics signature and minimum and mean ADC values were evaluated by receiver operating characteristic (ROC) curve analysis and compared by DeLong's test. Results: The whole lesion-based mean ADC showed no difference between benign and malignant testicular masses (P = 0.070, training cohort; P = 0.418, validation cohort). Compared with the minimum ADC, the ADC-based radiomics signature yielded a higher area under the curve (AUC) in both the training (AUC: 0.904, 95% confidence interval [CI]: 0.832-0.975) and validation cohorts (AUC: 0.868, 95% CI: 0.728-1.00). Conclusions: Conventional mean ADC values are not always helpful in discriminating between testicular benignities and malignancies. The minimum ADC and radiomics signature might be better alternatives, with the radiomics signature performing better than the minimum ADC.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2020]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Radiol,Tongji Med Coll,1095 Jiefang Rd,Wuhan 430030,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:1 总访问量:411 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)