高级检索
当前位置: 首页 > 详情页

miR-320a induces pancreatic β cells dysfunction in diabetes by inhibiting MafF.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Division of Cardiology,Department of Internal Medicine,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,1095# Jiefang Ave.,Wuhan 430030,China. [2]Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China. [3]The Center for Biomedical Research,Department of Respiratory and Critical Care Medicine,NHC Key Laboratory of Respiratory Diseases,Tongji Hospital,Tongji Medical College,Huazhong University of Sciences and Technology,1095 Jiefang Ave.,Wuhan 430030,China.
出处:
ISSN:

摘要:
A variety of studies indicate that microRNAs (miRNAs) are involved in diabetes. However, the direct role of miR-320a in the pathophysiology of pancreatic β cells under diabetes mellitus remains unclear. In the current study, islet transplantation and hyperglycemic clamp assays were performed in miR-320a transgenic mice to explore the effects of miR-320a on pancreatic β cells in vivo. Meanwhile, β cell-specific overexpression or inhibition of miR-320a was delivered by adeno-associated virus (AAV8). In vitro, overexpression or downregulation of miR-320a was introduced in cultured rat islet tumor cells (INS1). RNA immunoprecipitation sequencing (RIP-Seq), luciferase reporter assay, and western blotting were performed to identify the target genes. Results showed that miR-320a was increased in the pancreatic β cells from high-fat-diet (HFD)-treated mice. Overexpression of miR-320a could not only deteriorate the HFD-induced pancreatic islet dysfunction, but also initiate pancreatic islet dysfunction spontaneously in vivo. Meanwhile, miR-320a increased the ROS level, inhibited proliferation, and induced apoptosis of cultured β cells in vitro. Finally, we identified that MafF was the target of miR-320a that responsible for the dysfunction of pancreatic β cells. Our data suggested that miR-320a could damage the pancreatic β cells directly and might be a potential therapeutic target of diabetes.© 2021 The Author(s).

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验
JCR分区:
出版当年[2019]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Division of Cardiology,Department of Internal Medicine,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,1095# Jiefang Ave.,Wuhan 430030,China. [2]Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)