高级检索
当前位置: 首页 > 详情页

Comparison and development of preoperative systemic inflammation markers-based models for the prediction of unfavorable pathology in newly diagnosed clinical T1 renal cell carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan 430030,Hubei,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Radiol,Wuhan 430030,Hubei,Peoples R China
出处:
ISSN:

关键词: Renal cell carcinoma Inflammatory markers Unfavorable pathology

摘要:
Background: We sought to investigate the preoperative risk factors associated with the unfavorable pathology (UP) of clinical T1 (cT1) renal lesions. The aims of this study were to develop and compare several novel models capable of accurately identifying those patients at high risk of harboring occult adverse histopathological characteristics. Methods: The clinical parameters and preoperative laboratory test results from 1281 cT1 renal cell carcinomas (RCCs) patients who underwent partial nephrectomy (PN) or radical nephrectomy (RN) were collected. The data was randomly split into training (70%) and testing (30%) datasets. We performed univariable and multivariable logistic regression analyses for significant predictors and, subsequently, constructed predictive models based on those significant risk factors. Receiver operating characteristic (ROC) analysis was used to determine the model with the highest discrimination power with corresponding area under the curve (AUC). Calibration curves were plotted and decision curve analyses (DCAs) were applied to explore clinical net benefit. Results: UP was identified in 21.1% (n = 270), 21.0% (n = 188) and 21.3% (n = 82) patients in the total population, training cohort and validation cohort, respectively. R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to the polar lines) nephrometry score, tumor size, neutrophil-to-lymphocyte ratio (NLR) and albumin-to-globulin ratio (AGR) were independent predictors of UP. Among those predictive models, the model that consisted of tumor size, hemoglobin, NLR and AGR performs best according to the highest AUC of 0.70 and the highest net benefit. When tumor histology was added to the biomarker-based model, including tumor size, hemoglobin, NLR and AGR, the AUC improved from 0.60 to 0.63 in the validation cohort. Conclusions: In this analytical model study, our findings verified that systemic inflammation response markers showed high potential for identifying UP. Our biomarker-based models well predicted occult aggressive histopathological characteristics among patients with cT1 renal lesions, and the use of models may be greatly beneficial to urologists in tailoring precise management and therapy for patients. Robust validation is warranted prior to adoption into clinical practice.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 病理学
最新[2025]版:
大类 | 4 区 医学
小类 | 3 区 病理学
JCR分区:
出版当年[2019]版:
Q3 PATHOLOGY
最新[2023]版:
Q2 PATHOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan 430030,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)