高级检索
当前位置: 首页 > 详情页

DeepEBV: a deep learning model to predict Epstein-Barr virus (EBV) integration sites

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Minist Educ, Key Lab Brain Cognit & Educ Sci, Guangzhou, Peoples R China [2]South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou 510631, Peoples R China [3]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Gynaecol Oncol, Guangzhou 510080, Guangdong, Peoples R China [4]Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Urol, Beijing 100853, Peoples R China [5]Nankai Univ, Sch Med, Tianjin 300071, Peoples R China [6]Sun Yat Sen Univ, Affiliated Hosp 1, Ctr Translat Med, Guangzhou 510080, Guangdong, Peoples R China [7]Generulor Co Bio X Lab, Guangzhou 510006, Guangdong, Peoples R China [8]Sun Yat Sen Univ, Affiliated Hosp 1, Eastern Hosp, Dept Med Oncol, Guangzhou 510700, Peoples R China [9]South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China [10]Macao Polytech Inst, Sch Hlth Sci & Sports, Macau, Peoples R China [11]Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Pharm, Wuhan 430030, Peoples R China [12]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Obstet & Gynaecol, Wuhan 430030, Hubei, Peoples R China
出处:
ISSN:

摘要:
Motivation: Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. Results: An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 生物
小类 | 1 区 数学与计算生物学 2 区 生化研究方法 2 区 生物工程与应用微生物
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 生化研究方法 3 区 生物工程与应用微生物 3 区 数学与计算生物学
JCR分区:
出版当年[2019]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 BIOCHEMICAL RESEARCH METHODS Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
最新[2023]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Minist Educ, Key Lab Brain Cognit & Educ Sci, Guangzhou, Peoples R China [2]South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou 510631, Peoples R China
通讯作者:
通讯机构: [3]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Gynaecol Oncol, Guangzhou 510080, Guangdong, Peoples R China [12]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Obstet & Gynaecol, Wuhan 430030, Hubei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)