高级检索
当前位置: 首页 > 详情页

Development and Validation of an Unsupervised Feature Learning System for Leukocyte Characterization and Classification: A Multi-Hospital Study

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Nanjing Med Univ, Affiliated Hosp 2, Lab Med Ctr, Nanjing 210011, Peoples R China [2]Nanjing Med Univ, Affiliated Brain Hosp, Dept Lab Med, Nanjing 210029, Peoples R China [3]Lawrence Berkeley Natl Lab, Berkeley Biomed Data Sci Ctr, Berkeley, CA 94720 USA [4]Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA [5]Nanjing Med Univ, Sch Publ Hlth, State Key Lab Reprod Med, Nanjing 211166, Peoples R China [6]Nanjing Med Univ, Sch Publ Hlth, Key Lab Modern Toxicol, Minist Educ, Nanjing 211166, Peoples R China [7]Nanjing Univ, Dept Clin Lab, Med Sch, Affiliated Drum Tower Hosp, Nanjing 210008, Peoples R China [8]301 Hosp, Dept Lab Med, Beijing 100085, Peoples R China [9]Nanjing Univ, Sch Med, Jinling Hosp, Dept Clin Lab, Nanjing 210002, Peoples R China [10]Wuhan Univ, Zhongnan Hosp, Dept Hematol, Wuhan 430071, Peoples R China [11]Hubei Univ Med, Clin Sch 1, Shiyan 442000, Peoples R China [12]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Hematol, Tongji Med Coll, Wuhan 430030, Peoples R China [13]Wuhan Univ, Zhongnan Hosp, Dept Neurosurg, Wuhan 430071, Peoples R China [14]Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
出处:
ISSN:

关键词: Unsupervised feature learning Leukocyte Classification Multi-hospital clinical validation

摘要:
The characterization and classification of white blood cells (WBC) are critical for the diagnosis of anemia, leukemia, and many other hematologic diseases. We developed WBC-Profiler, an unsupervised feature learning system for quantitative analysis of leukocytes. We demonstrate, through independent validation, that WBC-Profiler enables automatic extraction of complex and robust signatures from microscopic images without human-intervention and, thereafter, effective construction of interpretable leukocyte profiles, which decouples large scale complex leukocyte characterization from limitations in both human-based feature engineering/optimization and the end-to-end solutions provided by many modern deep neural networks. Further evaluation in a real-world clinical setting confirms that, compared with 23 clinicians from 8 hospitals (class-average-sensitivity, 0.798; class-average-specificity, 0.963; cell-average-timecost: 3.158 s), WBC-Profiler performs with significantly improved accuracy and speed (class-average-sensitivity, 0.890; class-average-specificity, 0.980; cell-average-timecost: 0.375 s). Our findings suggest that WBC-Profiler has the potential clinical implications.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 工程技术
小类 | 2 区 计算机:人工智能
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:人工智能
JCR分区:
出版当年[2019]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Nanjing Med Univ, Affiliated Hosp 2, Lab Med Ctr, Nanjing 210011, Peoples R China [2]Nanjing Med Univ, Affiliated Brain Hosp, Dept Lab Med, Nanjing 210029, Peoples R China
通讯作者:
通讯机构: [3]Lawrence Berkeley Natl Lab, Berkeley Biomed Data Sci Ctr, Berkeley, CA 94720 USA [4]Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:414 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)