高级检索
当前位置: 首页 > 详情页

Advanced Pediatric Diffuse Pontine Glioma Murine Models Pave the Way towards Precision Medicine

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Neurol Surg,Tongji Med Coll,Wuhan 430030,Peoples R China [2]Purdue Univ Northwest, Dept Biol Sci, Hammond, IN 46323 USA [3]Northwestern Univ, Dept Neurol Surg, Feinberg Sch Med, Chicago, IL 60611 USA
出处:
ISSN:

关键词: diffuse intrinsic pontine glioma molecular biology patient derived xenografts genetically engineered mouse model humanized mouse model

摘要:
Simple Summary: Diffuse intrinsic pontine gliomas are malignant brain tumors which arise from the pons in children. These tumors are incurable and nearly all the patients die within a year after diagnosis. To identify effective therapeutics, the molecular mechanisms of tumorigenesis need be comprehensively understood and advanced mouse DIPG models have to be developed for further therapeutic assessment. Over the past decade, remarkable research progress has been made, leading to several ongoing clinical trials. In this review, we update the molecular findings and summarize innovative mouse models generated in the past few years, that are used to understand DIPG and help identify potential treatments. We also prospect future directions for the development of next generation DIPG mouse models. Diffuse intrinsic pontine gliomas (DIPGs) account for similar to 15% of pediatric brain tumors, which invariably present with poor survival regardless of treatment mode. Several seminal studies have revealed that 80% of DIPGs harbor H3K27M mutation coded by HIST1H3B, HIST1H3C and H3F3A genes. The H3K27M mutation has broad effects on gene expression and is considered a tumor driver. Determination of the effects of H3K27M on posttranslational histone modifications and gene regulations in DIPG is critical for identifying effective therapeutic targets. Advanced animal models play critical roles in translating these cutting-edge findings into clinical trial development. Here, we review current molecular research progress associated with DIPG. We also summarize DIPG animal models, highlighting novel genomic engineered mouse models (GEMMs) and innovative humanized DIPG mouse models. These models will pave the way towards personalized precision medicine for the treatment of DIPGs.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2019]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Neurol Surg,Tongji Med Coll,Wuhan 430030,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)