高级检索
当前位置: 首页 > 详情页

Development and validation of an online model to predict critical COVID-19 with immune-inflammatory parameters

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Natl Med Ctr Major Publ Hlth Events,Wuhan 430000,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab Chinese,Minist Educ,1095 Jiefang Ave,Wuhan 430000,Peoples R China [3]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol & Obstet,Wuhan,Peoples R China [4]City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Tatchee Ave, Hong Kong 999077, Peoples R China [5]Northwestern Polytech Univ, Sch Software, Xian, Peoples R China [6]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gastroenterol,Wuhan 430000,Peoples R China [7]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Hematol,Wuhan,Peoples R China
出处:
ISSN:

关键词: COVID-19 Critical illness Machine learning Immune-inflammatory parameters Online model

摘要:
Background: Immune and inflammatory dysfunction was reported to underpin critical COVID-19(coronavirus disease 2019). We aim to develop a machine learning model that enables accurate prediction of critical COVID-19 using immune-inflammatory features at admission. Methods: We retrospectively collected 2076 consecutive COVID-19 patients with definite outcomes (discharge or death) between January 27, 2020 and March 30, 2020 from two hospitals in China. Critical illness was defined as admission to intensive care unit, receiving invasive ventilation, or death. Least Absolute Shrinkage and Selection Operator (LASSO) was applied for feature selection. Five machine learning algorithms, including Logistic Regression (LR), Support Vector Machine (SVM), Gradient Boosted Decision Tree (GBDT), K-Nearest Neighbor (KNN), and Neural Network (NN) were built in a training dataset, and assessed in an internal validation dataset and an external validation dataset. Results: Six features (procalcitonin, [T + B + NK cell] count, interleukin 6, C reactive protein, interleukin 2 receptor, T-helper lymphocyte/T-suppressor lymphocyte) were finally used for model development. Five models displayed varying but all promising predictive performance. Notably, the ensemble model, SPMCIIP (severity prediction model for COVID-19 by immune-inflammatory parameters), derived from three contributive algorithms (SVM, GBDT, and NN) achieved the best performance with an area under the curve (AUC) of 0.991 (95% confidence interval [CI] 0.979-1.000) in internal validation cohort and 0.999 (95% CI 0.998-1.000) in external validation cohort to identify patients with critical COVID-19. SPMCIIP could accurately and expeditiously predict the occurrence of critical COVID-19 approximately 20 days in advance. Conclusions: The developed online prediction model SPMCIIP is hopeful to facilitate intensive monitoring and early intervention of high risk of critical illness in COVID-19 patients.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 危重病医学
最新[2025]版:
大类 | 2 区 医学
小类 | 3 区 危重病医学
JCR分区:
出版当年[2019]版:
Q2 CRITICAL CARE MEDICINE
最新[2023]版:
Q1 CRITICAL CARE MEDICINE

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Natl Med Ctr Major Publ Hlth Events,Wuhan 430000,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab Chinese,Minist Educ,1095 Jiefang Ave,Wuhan 430000,Peoples R China [3]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol & Obstet,Wuhan,Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Natl Med Ctr Major Publ Hlth Events,Wuhan 430000,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab Chinese,Minist Educ,1095 Jiefang Ave,Wuhan 430000,Peoples R China [3]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol & Obstet,Wuhan,Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)