高级检索
当前位置: 首页 > 详情页

Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Wuhan Univ, Dept Gastroenterol, Renmin Hosp, 99 Zhangzhidong Rd, Wuhan 430060, Peoples R China [2]Wuhan Univ, Key Lab Hubei Prov Digest Syst Dis, Renmin Hosp, Wuhan, Peoples R China [3]Wuhan Univ, Hubei Prov Clin Res Ctr Digest Dis Minimally Inva, Renmin Hosp, Wuhan, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Gastroenterol, Wuhan, Peoples R China [5]Huazhong Univ Sci & Technol, Cent Hosp Wuhan, Tongji Med Coll, Dept Gastroenterol, Wuhan, Peoples R China [6]China Three Gorges Univ, Dept Gastroenterol, Peoples Hosp, Peoples Hosp Yichang 1, Yichang, Peoples R China [7]China Three Gorges Univ, Yichang Cent Peoples Hosp, Dept Gastroenterol, Yichang, Peoples R China [8]Wuhan Univ, Dept Pathol, Renmin Hosp, Wuhan, Peoples R China [9]Jilin Peoples Hosp, Dept Gastroenterol, Jilin, Jilin, Peoples R China [10]China Univ Geosci, Sch Geog & Informat Engn, Wuhan, Peoples R China [11]Huazhong Univ Sci & Technol, Cent Hosp Wuhan, Tongji Med Coll, Dept Pathol, Wuhan, Peoples R China
出处:
ISSN:

摘要:
Background Esophagogastroduodenoscopy (EGD) is a prerequisite for detecting upper gastrointestinal lesions especially early gastric cancer (EGC). An artificial intelligence system has been shown to monitor blind spots during EGD. In this study, we updated the system (ENDOANGEL), verified its effectiveness in improving endoscopy quality, and pretested its performance in detecting EGC in a multicenter randomized controlled trial. Methods ENDOANGEL was developed using deep convolutional neural networks and deep reinforcement learning. Patients undergoing EGD in five hospitals were randomly assigned to the ENDOANGEL- assisted group or to a control group without use of ENDOANGEL. The primary outcome was the number of blind spots. Secondary outcomes included performance of ENDOANGEL in predicting EGC in a clinical setting. Results 1050 patients were randomized, and 498 and 504 patients in the ENDOANGEL and control groups, respectively, were analyzed. Compared with the control group, the ENDOANGEL group had fewer blind spots (mean 5.38 [standard deviation (SD) 4.32] vs. 9.82 [SD 4.98]; P < 0.001) and longer inspection time (5.40 [SD 3.82] vs. 4.38 [SD 3.91] minutes; P < 0.001). In the ENDOANGEL group, 196 gastric lesions with pathological results were identified. ENDOANGEL correctly predicted all three EGCs (one mucosal carcinoma and two high grade neoplasias) and two advanced gastric cancers, with a per-lesion accuracy of 84.7%, sensitivity of 100 %, and specificity of 84.3% for detecting gastric cancer. Conclusions In this multicenter study, ENDOANGEL was an effective and robust system to improve the quality of EGD and has the potential to detect EGC in real time.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 医学
小类 | 1 区 外科 2 区 胃肠肝病学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 外科 2 区 胃肠肝病学
JCR分区:
出版当年[2019]版:
Q1 GASTROENTEROLOGY & HEPATOLOGY Q1 SURGERY
最新[2023]版:
Q1 GASTROENTEROLOGY & HEPATOLOGY Q1 SURGERY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Wuhan Univ, Dept Gastroenterol, Renmin Hosp, 99 Zhangzhidong Rd, Wuhan 430060, Peoples R China [2]Wuhan Univ, Key Lab Hubei Prov Digest Syst Dis, Renmin Hosp, Wuhan, Peoples R China [3]Wuhan Univ, Hubei Prov Clin Res Ctr Digest Dis Minimally Inva, Renmin Hosp, Wuhan, Peoples R China
通讯作者:
通讯机构: [1]Wuhan Univ, Dept Gastroenterol, Renmin Hosp, 99 Zhangzhidong Rd, Wuhan 430060, Peoples R China [2]Wuhan Univ, Key Lab Hubei Prov Digest Syst Dis, Renmin Hosp, Wuhan, Peoples R China [3]Wuhan Univ, Hubei Prov Clin Res Ctr Digest Dis Minimally Inva, Renmin Hosp, Wuhan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)