高级检索
当前位置: 首页 > 详情页

SurVirus: a repeat-aware virus integration caller

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Natl Univ Singapore, Sch Comp, 13 Comp Dr, Singapore 117417, Singapore [2]Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, 28 Med Dr, Singapore 117456, Singapore [3]Huazhong Agr Univ, Coll Informat, Hubei Engn Technol Res Ctr Agr Big Data, Agr Bioinformat Key Lab Hubei Prov, Wuhan 430070, Peoples R China [4]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol Oncol,Wuhan,Hubei,Peoples R China [5]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab,Minist Educ,Wuhan,Peoples R China [6]Genome Inst Singapore, 60 Biopolis St, Genome 138672, Singapore
出处:
ISSN:

摘要:
A significant portion of human cancers are due to viruses integrating into human genomes. Therefore, accurately predicting virus integrations can help uncover the mechanisms that lead to many devastating diseases. Virus integrations can be called by analysing second generation high-throughput sequencing datasets. Unfortunately, existing methods fail to report a significant portion of integrations, while predicting a large number of false positives. We observe that the inaccuracy is caused by incorrect alignment of reads in repetitive regions. False alignments create false positives, while missing alignments create false negatives. This paper proposes SurVirus, an improved virus integration caller that corrects the alignment of reads which are crucial for the discovery of integrations. We use publicly available datasets to show that existing methods predict hundreds of thousands of false positives; SurVirus, on the other hand, is significantly more precise while it also detects many novel integrations previously missed by other tools, most of which are in repetitive regions. We validate a subset of these novel integrations, and find that the majority are correct. Using SurVirus, we find that HPV and HBV integrations are enriched in LINE and Satellite regions which had been overlooked, as well as discover recurrent HBV and HPV breakpoints in human genome-virus fusion transcripts.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 生物
小类 | 1 区 生化与分子生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
JCR分区:
出版当年[2019]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Natl Univ Singapore, Sch Comp, 13 Comp Dr, Singapore 117417, Singapore [2]Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, 28 Med Dr, Singapore 117456, Singapore
通讯作者:
通讯机构: [1]Natl Univ Singapore, Sch Comp, 13 Comp Dr, Singapore 117417, Singapore [3]Huazhong Agr Univ, Coll Informat, Hubei Engn Technol Res Ctr Agr Big Data, Agr Bioinformat Key Lab Hubei Prov, Wuhan 430070, Peoples R China [4]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol Oncol,Wuhan,Hubei,Peoples R China [5]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab,Minist Educ,Wuhan,Peoples R China [6]Genome Inst Singapore, 60 Biopolis St, Genome 138672, Singapore
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:591 今日访问量:1 总访问量:443 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)