高级检索
当前位置: 首页 > 详情页

基于卷积神经网络的深度学习算法对颅内出血的类型识别及血肿分割一致性的研究

| 认领 | 导出 |

文献详情

资源类型:

收录情况: ◇ 统计源期刊 ◇ 北大核心 ◇ CSCD-C

单位: [1]华中科技大学同济医学院附属同济医院放射科 [2]上海联影智能医疗科技有限公司
出处:
ISSN:

关键词: 卷积神经网络 深度学习 颅内出血 血肿分割 体层摄影术 X线计算机

摘要:
目的:开发一种可以检测不同类型颅内出血并自动计算血肿体积的基于卷积神经网络的深度学习算法,探讨其识别的准确性及血肿分割的一致性。方法:数据集1纳入9594例颅脑CT平扫图像,随机选取223例颅内出血阳性患者作为颅内出血类型识别的测试集,剩余CT图像作为其训练集,评估测试集中算法识别五种不同类型颅内出血的效能。数据集2选取另外819例已人工勾画出血灶的CT图像,随机选取74例作为测试集,以人工手动分割为金标准,验证测试集中算法分割与人工分割的一致性。结果:在223例颅内出血阳性患者中,深度学习算法对五种类型颅内出血识别的曲线下面积均大于或接近0.85,特异度均大于0.95;在74例血肿分割测试数据中,算法自动测量的血肿体积与人工手动分割测量的血肿体积之间达到较高的一致性,脑实质内出血、硬膜外出血、脑室内出血及硬膜下出血体积测量的组内相关系数分别为1、0.990、0.996和0.878。结论:基于卷积神经网络的深度学习算法可以较好地识别不同类型的颅内出血,并能精确测量血肿体积,具有一定的临床应用前景。

基金:
语种:
第一作者:
第一作者单位: [1]华中科技大学同济医学院附属同济医院放射科
通讯作者:
推荐引用方式(GB/T 7714):

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)