高级检索
当前位置: 首页 > 详情页

Machine learning-aided risk stratification system for the prediction o coronary artery disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Internal Med,Div Cardiol, Wuhan 430030, Peoples R China [2]Hubei Key Lab Genet & Mol Mech Cardiol Disorders, Wuhan 430030, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Publ Hlth, Dept Epidemiol & Med Stat, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: Machine learning-aided risk stratification system Coronary artery disease Coronary artery angiography Risk probability

摘要:
Background: Machine learning (ML) may be helpful to simplify the risk stratification of coronary artery disease (CAD). The current study aims to establish a ML-aided risk stratification system to simplify the procedure of the diagnosis of CAD. Methods and results: 5819 patients with coronary artery angiography (CAG) from July 2015 and December 2018 in our hospital, 2583 patients (aged 56 +/- 11, <50% stenosis) and 3236 patients (aged 60 +/- 10, >= 50% stenosis), available on age, sex, history of smoking, systolic and diastolic blood pressure, total cholesterol level, low- and high-density lipoprotein, triglyceride level, glycosylated hemoglobin Mc and uric add were included in the ensemble model of ML Receiver-operating characteristic curves showed that area-under-the-curve of the training data (90%) and the testing data (10%) were 0.81 and 0.75 (P = 0.006483). The validation data of 582 patients with CAG from July 2019 to September 2019 in our hospital showed the same predictive rate of the testing data. The low-risk group (risk probability<0.2) without the treatment of hypertension, diabetes and CAD could be probably excluded the diagnosis of CAD, the moderate-risk group (risk probability 0.2-0.8) would need further examination, and high-risk group (risk probability>0.8) would suggested to perform CAG directly. Conclusion: Machine learning-aided detection system with the clinical data of age, sex, history of smoking, systolic and diastolic blood pressure, total cholesterol level, low- and high-density lipoprotein, triglyceride level, glycosylated hemoglobin A1c and uric acid could be helpful for the risk stratification of prediction for the coronary artery disease. (C) 2020 Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 心脏和心血管系统
最新[2025]版:
大类 | 2 区 医学
小类 | 3 区 心脏和心血管系统
JCR分区:
出版当年[2019]版:
Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
最新[2023]版:
Q2 CARDIAC & CARDIOVASCULAR SYSTEMS

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Internal Med,Div Cardiol, Wuhan 430030, Peoples R China [2]Hubei Key Lab Genet & Mol Mech Cardiol Disorders, Wuhan 430030, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Internal Med,Div Cardiol, Wuhan 430030, Peoples R China [2]Hubei Key Lab Genet & Mol Mech Cardiol Disorders, Wuhan 430030, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:1 总访问量:411 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)