高级检索
当前位置: 首页 > 详情页

Interferon regulatory factor 9 is an essential mediator of heart dysfunction and cell death following myocardial ischemia/reperfusion injury

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Wuhan Univ, Renmin Hosp, Dept Cardiol, Wuhan 430060, Peoples R China [2]Wuhan Univ, Cardiovasc Res Inst, Wuhan 430060, Peoples R China [3]Sanford Burnham Med Res Inst, Ctr Canc, San Diego, CA USA [4]Huazhong Univ Sci & Technol, Dept Thorac & Cardiovasc Surg, Tongji Hosp, Tongji Med Coll, Wuhan 430030, Peoples R China [5]Wuhan Univ, Coll Life Sci, Wuhan 430072, Peoples R China
出处:
ISSN:

关键词: IRF9 Ischemia-reperfusion injury Sirt1 P53

摘要:
This study aimed to investigate whether interferon regulatory factor 9 (IRF9) is involved in the pathogenesis of myocardial ischemia-reperfusion (I/R) injury and to explore the underlying molecular mechanisms of this process. Cell death plays a major role in myocardial I/R injury. We recently determined the importance of IRF9 in coordinating molecular events in response to hypertrophic stress in cardiomyocytes. However, the roles of IRF9 in lethal myocardial injury remain to be elucidated. The involvement of IRF9 was assessed via functional assays in a mouse myocardial I/R injury model by genetic knockout and cardiomyocyte-specific transgenic overexpression of IRF9, and its effects on cardiomyocyte apoptosis and inflammation were further studied in vivo and in vitro. IRF9 was upregulated in human ischemic heart tissue and mouse hearts after I/R injury. Ablation of IRF9 protected the heart against I/R-induced cardiomyocyte death, development of inflammation, and loss of heart function. In contrast, cardiomyocyte-specific transgenic overexpression of IRF9 aggravated myocardial reperfusion injury and inflammation. IRF9 negatively regulated the Sirt1-p53 axis under I/R conditions in vivo and in vitro. Downregulation of Sirt1 expression and its downstream apoptosis-related signaling cascade, which results from I/R, was ameliorated by loss of IRF9 and exacerbated by overexpression of IRF9. Cardiomyocyte-specific deletion of Sirt1 abolished the protective effect of IRF9 knockout against I/R injury, which further indicated that IRF9 mediated myocardial reperfusion injury by modulating the Sirt1-p53 axis. Thus, IRF9 may be a novel therapeutic target for the prevention of I/R injury resulting from revascularization therapy after acute myocardial infarction (MI).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 1 区 医学
小类 | 2 区 心脏和心血管系统
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 心脏和心血管系统
JCR分区:
出版当年[2012]版:
Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
最新[2023]版:
Q1 CARDIAC & CARDIOVASCULAR SYSTEMS

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者单位: [1]Wuhan Univ, Renmin Hosp, Dept Cardiol, Wuhan 430060, Peoples R China [2]Wuhan Univ, Cardiovasc Res Inst, Wuhan 430060, Peoples R China
通讯作者:
通讯机构: [1]Wuhan Univ, Renmin Hosp, Dept Cardiol, Wuhan 430060, Peoples R China [2]Wuhan Univ, Cardiovasc Res Inst, Wuhan 430060, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:590 今日访问量:1 总访问量:442 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)