Histone H2B O-GlcNAcylation is an important post-translational modification of chromatin during gene transcription. However, how this epigenetic modification is regulated remains unclear. Here we found that the energy-sensing adenosine-monophosphate-activated protein kinase (AMPK) could suppress histone H2B O-GlcNAcylation. AMPK directly phosphorylates O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase (OGT). Although this phosphorylation does not regulate the enzymatic activity of OGT, it inhibits OGT-chromatin association, histone O-GlcNAcylation and gene transcription. Conversely, OGT also O-GlcNAcylates AMPK and positively regulates AMPK activity, creating a feedback loop. Taken together, these results reveal a crosstalk between the LKB1-AMPK and the hexosamine biosynthesis (HBP)-OGT pathways, which coordinate together for the sensing of nutrient state and regulation of gene transcription.
基金:
National Program on Key Basic Research Project [973 Program] [2013CB910300, 2012CB910300]; One Thousand Young Talent Program; State Key Laboratory of Proteomics [SKLP-O201303]