高级检索
当前位置: 首页 > 详情页

Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,Wuhan 430030,Hubei,Peoples R China [2]Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Ctr Canc, Wuhan 430023, Peoples R China
出处:
ISSN:

关键词: Microglia Migration Epidermal growth factor receptor Calcium oscillation Lipopolysaccharide

摘要:
Previous reports have suggested that epidermal growth factor receptor (EGFR) is involved in microglia activation characterized by cell morphology changes, cytokine production and cell migration; and the biochemical regulation of the microglia migration is a potential therapeutic target following CNS inflammatory damages. However, the role of EGFR in microglia motility after inflammatory stimulation remains unknown. In the present study, lipopolysaccharide (LPS) was found to trigger rapid EGFR phosphorylation within 10 min, which was sustained during long-term stimulation in both primary microglial cells and the cultured BV2 microglial cells, furthermore, blocking EGFR phosphorylation by AG1478 significantly attenuated the LPS-induced chemotactic and chemokinetic migration of microglia. In addition, LPS could initiate calcium oscillation in microglia during live-cell recording, however, an intracellular calcium chelator and a selective inhibitor of calcium/calmodulin-dependent protein kinase II, but not an extracellular calcium chelator, remarkably suppressed the LPS-induced EGFR phosphorylation in BV2 microglia cells. As EGFR is not a traditional receptor for LPS, these findings suggest that the rapid phosphorylation of EGFR is attributed to the LPS-triggered intracellular calcium mobilization. By examining the downstream signals of EGFR, we further proved that extracellular signal-regulated kinase (ERK) is essential for EGFR-mediated microglia migration, because ERK inhibition attenuated the chemotactic and chemokinetic migration of microglia that had been induced by either LPS or EGF. Collectively, these results suggest that LPS could trigger the rapid phosphorylation of EGFR and subsequent ERIC activation through mobilizing calcium activity, which underlies the microglia migration in an inflammatory condition. (C) 2015 Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 3 区 医学
小类 | 4 区 生化与分子生物学 4 区 神经科学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生化与分子生物学 3 区 神经科学
JCR分区:
出版当年[2013]版:
Q3 NEUROSCIENCES Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 NEUROSCIENCES Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,Wuhan 430030,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)