高级检索
当前位置: 首页 > 详情页

Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen-glucose deprivation and reoxygenation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Neurol,Tongji Med Coll,Wuhan 430030,Peoples R China
出处:
ISSN:

关键词: Mammalian target of rapamycin Reactive astrogliosis Oxygen-glucose deprivation Proliferation Migration Inflammation mediator

摘要:
Glial scar is a major impediment to axonal regeneration in central nervous system (CNS) disorders. Overcoming this physical and biochemical barrier might be crucial for axonal regeneration and functional compensation during the progression of CNS disorders. The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase, involved in process of cell proliferation, migration, autophagy and protein synthesis. Rapamycin, an inhibitor of mTOR signaling, can exert neuroprotective effects in several CNS diseases. However, its role in the process of reactive astrogliosis including cell proliferation, migration and cytokine production after cerebral ischemia still remains largely unknown. In this study, we investigated the effects of mTOR blockade in cultured astrocytes exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), a wildly used cellular ischemia model which mimics ideally cerebral ischemia model in vivo. We found that astrocytes became activated after OGD/R, characterized by change of astrocytic morphology, upregulation of GFAP expression, the increase number of Edu positive cells, and accompanied with phosphorylation of mTOR protein and its substrate S6K1. Rapamycin significantly inhibited mTOR signal pathway, suppressed proliferation of astrocytes via modulation of cell cycle progression. Moreover, rapamycin attenuated astrocytic migration and mitigated production of inflammatory factors such as TNF-alpha and iNOS induced by astrocytes exposed to OGD/R. Taken together, our findings indicated that mTOR blockade by rapamycin attenuates astrocyte migration, proliferation and production of inflammation mediators. We suggest that targeting mTOR pathway in astrocyte activation may represent a potentially new therapeutic strategy against deleterious neurotoxic processes of reactive astrogliosis in CNS disorders such as ischemic stroke. (C) 2015 Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 3 区 医学
小类 | 4 区 生化与分子生物学 4 区 神经科学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生化与分子生物学 3 区 神经科学
JCR分区:
出版当年[2013]版:
Q3 NEUROSCIENCES Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 NEUROSCIENCES Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Neurol,Tongji Med Coll,Wuhan 430030,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:1 总访问量:409 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)