高级检索
当前位置: 首页 > 详情页

Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Dept Pharm, Tongji Hosp, Tongji Med Coll, Wuhan 430074, Peoples R China
出处:
ISSN:

关键词: Dihydromyricetin Endothelial cell Mitochondrial pathways Oxidative stress Apoptosis

摘要:
Heading aims: Dihydromyricetin (DMY) is the most abundant ingredient in vine tea. Here, we investigated the cytoprotective effects and possible mechanisms of DMY on hydrogen peroxide (H2O2)-induced oxidative stress damage in human umbilical vein endothelial cells (HUVECs). Materials and methods: The percentage of cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MU) assay. We determined the antioxidant properties of DMY by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA). Flow cytometry was used to measure apoptosis in HUVECs that were double stained with Hoechst 33342 and propidium iodide (PI). The generation of intracellular reactive oxygen species (ROS) was measured in 2',7'-dichlorofluorescin diacetate (DCFH-DA)-loaded HUVECs using a fluorescent microscope. Moreover, the expression of apoptosis-related proteins was determined by Western blotting. In addition, the release of nitric oxide (NO) was analyzed using a commercial kit. Key findings: HUVECs treated with H2O2 had a notable decrease in cell viability that was attenuated when cells were pretreated with DMY (37.5-300 mu M). DMY pretreatment significantly attenuated H2O2-induced apoptosis in HUVECs and inhibited intracellular ROS overproduction. Finally, pretreatment of cells with DMY prior to H2O2 exposure resulted in the inhibition of p53 activation, followed by the regulation of the expression of Bcl-2 and Bax, the release of cytochrome c, the cleavage (activation) of caspase-9 and caspase-3, and then the suppression of PARP cleavage in H2O2-induced HUVECs. Significance: Our study is the first to report that DMY can protect HUVECs from oxidative stress damage, an effect that is mediated by the mitochondrial apoptotic pathways. (C) 2015 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 3 区 医学
小类 | 3 区 药学 4 区 医学:研究与实验
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 药学 3 区 医学:研究与实验
JCR分区:
出版当年[2013]版:
Q2 PHARMACOLOGY & PHARMACY Q2 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Dept Pharm, Tongji Hosp, Tongji Med Coll, Wuhan 430074, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)