高级检索
当前位置: 首页 > 详情页

Structure Prior Effects in Bayesian Approaches of Quantitative Susceptibility Mapping

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu, Sichuan, Peoples R China [2]Univ Elect Sci & Technol China, Ctr Robot, Chengdu, Sichuan, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Radiol, Wuhan, Hubei, Peoples R China [4]Wuhan Inst Technol, Sch Comp Sci & Engn, Wuhan, Hubei, Peoples R China [5]Medimagemetric LLC, New York, NY USA [6]Cornell Univ, Dept Biomed Engn, Ithaca, NY USA [7]Cornell Univ, Weill Cornell Med Coll, Dept Radiol, New York, NY 10021 USA
出处:
ISSN:

摘要:
Quantitative susceptibility mapping (QSM) has shown its potential for anatomical and functional MRI, as it can quantify, for in vivo tissues, magnetic biomarkers and contrast agents which have differential susceptibilities to the surroundings substances. For reconstructing the QSM with a single orientation, various methods have been proposed to identify a unique solution for the susceptibility map. Bayesian QSM approach is the major type which uses various regularization terms, such as a piece-wise constant, a smooth, a sparse, or a morphological prior. Six QSM algorithms with or without structure prior are systematically discussed to address the structure prior effects. The methods are evaluated using simulations, phantom experiments with the given susceptibility, and human brain data. The accuracy and image quality of QSM were increased when using structure prior in the simulation and phantom compared to same regularization term without it, respectively. The image quality of QSM method using the structure prior is better comparing, respectively, to the method without it by either sharpening the image or reducing streaking artifacts in vivo. The structure priors improve the performance of the various QSMs using regularized minimization including L1, L2, and TV norm.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 3 区 生物
小类 | 3 区 生物工程与应用微生物 4 区 医学:研究与实验
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 生物工程与应用微生物 4 区 医学:研究与实验
JCR分区:
出版当年[2014]版:
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q3 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2014版] 出版当年五年平均 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者单位: [1]Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu, Sichuan, Peoples R China [2]Univ Elect Sci & Technol China, Ctr Robot, Chengdu, Sichuan, Peoples R China
通讯作者:
通讯机构: [1]Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu, Sichuan, Peoples R China [2]Univ Elect Sci & Technol China, Ctr Robot, Chengdu, Sichuan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:2 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)