高级检索
当前位置: 首页 > 详情页

Simulating the Evolution of Functional Brain Networks in Alzheimer's Disease: Exploring Disease Dynamics from the Perspective of Global Activity

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China [2]Educ Minist China, Image Proc & Intelligent Control Key Lab, Wuhan 430074, Peoples R China [3]China Ship Dev & Design Ctr, Wuhan 430064, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430074, Peoples R China [5]East China Jiaotong Univ, Sch Elect & Elect Engn, Nanchang 330013, Peoples R China
出处:
ISSN:

摘要:
Functional brain connectivity is altered during the pathological processes of Alzheimer's disease (AD), but the specific evolutional rules are insufficiently understood. Resting-state functional magnetic resonance imaging indicates that the functional brain networks of individuals with AD tend to be disrupted in hub-like nodes, shifting from a small world architecture to a random profile. Here, we proposed a novel evolution model based on computational experiments to simulate the transition of functional brain networks from normal to AD. Specifically, we simulated the rearrangement of edges in a pathological process by a high probability of disconnecting edges between hub-like nodes, and by generating edges between random pair of nodes. Subsequently, four topological properties and a nodal distribution were used to evaluate our model. Compared with random evolution as a null model, our model captured well the topological alteration of functional brain networks during the pathological process. Moreover, we implemented two kinds of network attack to imitate the damage incurred by the brain in AD. Topological changes were better explained by 'hub attacks' than by 'random attacks', indicating the fragility of hubs in individuals with AD. This model clarifies the disruption of functional brain networks in AD, providing a new perspective on topological alterations.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2014]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2014版] 出版当年五年平均 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China [2]Educ Minist China, Image Proc & Intelligent Control Key Lab, Wuhan 430074, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China [2]Educ Minist China, Image Proc & Intelligent Control Key Lab, Wuhan 430074, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:590 今日访问量:0 总访问量:442 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)