Background and Purpose-White matter (WM) ischemic injury, a major neuropathological feature of cerebral small vessel diseases, is an important cause of vascular cognitive impairment in later life. The pathogenesis of demyelination after WM ischemic damage are often accompanied by microglial activation. Fingolimod (FTY720) was approved for the treatment of multiple sclerosis for its immunosuppression property. In this study, we evaluated the neuroprotective potential of FTY720 in a WM ischemia model. Methods-Chronic WM ischemic injury model was induced by bilateral carotid artery stenosis. Cognitive function, WM integrity, microglial activation, and potential pathway involved in microglial polarization were assessed after bilateral carotid artery stenosis. Results-Disruption of WM integrity was characterized by demyelination in the corpus callosum and disorganization of Ranvier nodes using Luxol fast blue staining, immunofluorescence staining, and electron microscopy. In addition, radial maze test demonstrated that working memory performance was decreased at 1-month post-bilateral carotid artery stenosis-induced injury. Interestingly, FTY720 could reduce cognitive decline and ameliorate the disruption of WM integrity. Mechanistically, cerebral hypoperfusion induced microglial activation, production of associated proinflammatory cytokines, and priming of microglial polarization toward the M1 phenotype, whereas FTY720 attenuated microglia-mediated neuroinflammation after WM ischemia and promoted oligodendrocytogenesis by shifting microglia toward M2 polarization. FTY720's effect on microglial M2 polarization was largely suppressed by selective signal transducer and activator of transcription 3 (STAT3) blockade in vitro, revealing that FTY720-enabled shift of microglia from M1 to M2 polarization state was possibly mediated by STAT3 signaling. Conclusions-Our study suggested that FTY720 might be a potential therapeutic drug targeting brain inflammation by skewing microglia toward M2 polarization after chronic cerebral hypoperfusion. Visual Overview-An online visual overview is available for this article.
基金:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81571132, 81171157]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [2017KFYXJJ107, 2017KFYXJJ124]; Science Foundation of Tongji Hospital [2016A005]; National Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [R01NS088627]; NATIONAL INSTITUTE OF DENTAL & CRANIOFACIAL RESEARCHUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Dental & Craniofacial Research (NIDCR) [R21DE025689, R21DE025689] Funding Source: NIH RePORTER; NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKEUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Neurological Disorders & Stroke (NINDS) [R01NS088627, R01NS088627, R01NS088627, R01NS088627, R01NS088627, R01NS088627, R01NS088627] Funding Source: NIH RePORTER
第一作者单位:[1]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Dept Neurol,Wuhan 430030,Hubei,Peoples R China;
共同第一作者:
通讯作者:
通讯机构:[1]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Dept Neurol,Wuhan 430030,Hubei,Peoples R China;
推荐引用方式(GB/T 7714):
Qin Chuan,Fan Wen-Hui,Liu Qian,et al.Fingolimod Protects Against Ischemic White Matter Damage by Modulating Microglia Toward M2 Polarization via STAT3 Pathway[J].STROKE.2017,48(12):3336-3346.doi:10.1161/STROKEAHA.117.018505.
APA:
Qin, Chuan,Fan, Wen-Hui,Liu, Qian,Shang, Ke,Murugan, Madhuvika...&Tian, Dai-Shi.(2017).Fingolimod Protects Against Ischemic White Matter Damage by Modulating Microglia Toward M2 Polarization via STAT3 Pathway.STROKE,48,(12)
MLA:
Qin, Chuan,et al."Fingolimod Protects Against Ischemic White Matter Damage by Modulating Microglia Toward M2 Polarization via STAT3 Pathway".STROKE 48..12(2017):3336-3346