高级检索
当前位置: 首页 > 详情页

Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Radiol,Tongji Med Coll,Wuhan,Hubei,Peoples R China [2]Hanover Med Sch MHH, Dept Orthoped Trauma, Hannover, Germany [3]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Orthoped,Tongji Med Coll,Wuhan,Hubei,Peoples R China
出处:
ISSN:

关键词: polyurethane scaffold mesenchymal stromal cells hydrodynamic pressure mechanical properties bone tissue engineering

摘要:
Hydraulic pressure has recently been introduced as an effective stimulation in the field of tissue engineering. In this study, a polymer scaffold consisting of polyurethane (PU)-based 1, 4-butanediisocyanate was fabricated. A self-designed bioreactor was employed to produce perfusion and hydrodynamic pressure stimulations. The viability, proliferation and osteogenic differentiation of the rat bone mesenchymal stromal cell (rBMSC) growing in the polymer scaffold were investigated after hydrodynamic pressure stimulation. Additionally, the mechanical properties of the cell-laden constructs were also evaluated. Our findings suggested that the perfusion rate (10 mL/min) and low hydrodynamic pressure stimulation (60 mmHg, 0.5 Hz) maintained the viability of rBMSC during 2 weeks cultivation. The cell proliferation was promoted by 60 mmHg stimulation in the first week. The synthesis of alkaline phosphates and osteocalcin was enhanced after 2 weeks stimulation. Meanwhile, the equilibrium modulus of scaffold was increased by 1.85-fold using 60 mmHg hydrodynamic pressure stimulation. Additionally, type I and III procollagen produced by rBMSC was increased 4.92- and 3.02-fold, respectively. However, no encouraging results were detected in 120 mmHg hydrodynamic pressure group. Our study suggests that the 60 mmHg hydrodynamic pressure is a promising approach to enhance the functional properties of the rBMSC-laden PU-based bone scaffold. (c) 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3445-3455, 2017.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:生物医学 3 区 材料科学:生物材料
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学 4 区 材料科学:生物材料
JCR分区:
出版当年[2015]版:
Q1 ENGINEERING, BIOMEDICAL Q2 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Radiol,Tongji Med Coll,Wuhan,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)