高级检索
当前位置: 首页 > 详情页

Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Wuhan Univ, Dept Nephrol, Renmin Hosp, Wuhan, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Dept Geriatr, Tongji Hosp, Tongji Med Coll, Wuhan, Hubei, Peoples R China [3]Hubei Univ Nationalities, Dept Nephrol, Univ Hosp, Enshi, Peoples R China
出处:

摘要:
Sustained activation of autophagy and lipid accumulation in tubular epithelial cells (TECs) are both associated with the kidney fibrosis progression. Autophagy has been found involved in the lipid metabolism regulation through a bidirectional mechanism of inducing lipolysis as well as promoting lipid droplet formation. However, whether and how autophagy influences lipid accumulation in kidney fibrosis remain unclear. In the current study, we show that UUO-induced lipid accumulation in tubular cells was significantly reduced when the pharmacological inhibitor 3-MA or CQ was administrated both in vivo and in vitro. Of interest, colocalization of LDs and autophagosomes, as well as colocalization of LDs and lysosomes were undetected in UUO-induced fibrotic kidneys, although lysosome function remained robust, indicating the lipid accumulation is lipophagy-lysosome pathway independent. TGF-beta 1-induced lipid droplets formation in HK-2 cells were decreased when the Beclin-1 expression was silenced, implying that autophagy-upregulated lipid droplets formation is Beclin-1 dependent. Finally, CQ treatment of UUO-induced fibrotic kidneys reduced the expression of alpha-SMA and tubular cell apoptosis and rescued the expression of E-cadherin, which was associated with the ameliorated lipid deposition. Therefore, our work documented that autophagy promotes lipid droplet formation in TECs in a Beclin-1-dependent manner, which causes renal lipotoxicity and contributes to the progression of kidney fibrosis.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 细胞生物学
JCR分区:
出版当年[2016]版:
最新[2023]版:
Q1 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版]

第一作者:
第一作者单位: [1]Wuhan Univ, Dept Nephrol, Renmin Hosp, Wuhan, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Dept Geriatr, Tongji Hosp, Tongji Med Coll, Wuhan, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:2 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)