高级检索
当前位置: 首页 > 详情页

Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA [2]Mayo Clin, Dept Orthoped Surg, Rochester, MN 55905 USA [3]Tongji Univ, Dept Orthoped Surg, Shanghai East Hosp, Shanghai 200120, Peoples R China [4]Tongji Hosp,Dept Orthoped Surg,Wuhan 430030,Hubei,Peoples R China [5]Mayo Clin, Dept Cardiovasc Dis, Rochester, MN 55905 USA [6]Mayo Clin, Ctr Regenerat Med, Rochester, MN 55905 USA
出处:
ISSN:

摘要:
Biomimetic biomaterials require good biocompatibility and bioactivity to serve as appropriate scaffolds for tissue engineering applications. Recent developments demonstrated that the unique properties of carbon nanotubes (CNTs) can enhance neural cell growth and axon organization. We previously developed a promising nerve conduit manufactured from biodegradable polycaprolactone fumarate (PCLF) for use in peripheral nerve regeneration applications. In the present study, we fabricated conductive PCLF-CNT scaffolds using ultraviolet (UV) induced photocrosslinking. We confirmed the successful incorporation of CNTs into the PCLF-CNT scaffolds which exhibited improved surface roughness compared with plain PCLF by scanning electronic microscopy, transmission electronic microscopy, and atomic force microscopy examinations. The PCLF-CNT substrates also had reduced impedance by electrochemical measurements. Enhanced PC-12 cell growth and differentiation were observed on PCLF-CNT sheets compared with PCLF sheets, indicating the beneficial effects of embedding CNTs into PCLF. Electrical stimulation not only enhanced PC-12 cell proliferation and neurite extension, but also promoted cellular migration and intracellular connections, which are all critical cellular behaviours for nerve regeneration. Overall, this study provides a new promising strategy for using electrically conductive PCLF-CNT nerve scaffolds in regenerative medicine.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 工程技术
小类 | 2 区 材料科学:生物材料
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 材料科学:生物材料
JCR分区:
出版当年[2016]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA [2]Mayo Clin, Dept Orthoped Surg, Rochester, MN 55905 USA [3]Tongji Univ, Dept Orthoped Surg, Shanghai East Hosp, Shanghai 200120, Peoples R China
通讯作者:
通讯机构: [1]Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA [2]Mayo Clin, Dept Orthoped Surg, Rochester, MN 55905 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)