高级检索
当前位置: 首页 > 详情页

A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ SSCI ◇ EI

单位: [1]Tongji Zhejiang Coll, Med & Rehabil Equipment Res Ctr, Jiaxing, Peoples R China [2]Univ Auckland, Dept Mech Engn, Auckland, New Zealand [3]Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan, Hubei, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Rehabil Dept, Wuhan, Hubei, Peoples R China [5]Univ Leeds, Sch Elect & Elect Engn, Leeds, W Yorkshire, England
出处:
ISSN:

关键词: Robot-assisted Ankle Rehabilitation Drop foot Stretching

摘要:
This paper involves the use of a compliant ankle rehabilitation robot (CARR) for the treatment of drop foot. The robot has a bio-inspired design by employing four Festo Fluidic muscles (FFMs) that mimic skeletal muscles actuating three rotational degrees of freedom (DOFs). A trajectory tracking controller was developed in joint task space to track the predefined trajectory of the end effector. This controller was achieved by controlling individual FFM length based on inverse kinematics. Three patients with drop foot participated in a preliminary study to evaluate the potential of the CARR for clinical applications. Ankle stretching exercises along ankle dorsiflexion and plantarflexion (DP) were delivered for treating drop foot. All patients gave positive feedback in using this ankle robot for the treatment of drop foot, although some limitations exist. The proposed controller showed satisfactory accuracy in trajectory tracking, with all root mean square deviation (RMSD) values no greater than 0.0335 rad and normalized root mean square deviation (NRMSD) values less than 6.7%. These preliminary findings support the potentials of the CARR for clinical applications. Future work will investigate the effectiveness of the robot for treating drop foot on a large sample of subjects.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 4 区 工程技术
小类 | 4 区 计算机:人工智能 4 区 机器人学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:人工智能 4 区 机器人学
JCR分区:
出版当年[2016]版:
Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q3 ROBOTICS
最新[2023]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q2 ROBOTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]Tongji Zhejiang Coll, Med & Rehabil Equipment Res Ctr, Jiaxing, Peoples R China [2]Univ Auckland, Dept Mech Engn, Auckland, New Zealand
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)