高级检索
当前位置: 首页 > 详情页

Computational analysis of receptor tyrosine kinase inhibitors and cancer metabolism: implications for treatment and discovery of potential therapeutic signatures

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Ludwig Maximilians Univ Munchen, Inst Med Informat Biometry & Epidemiol, Munich, Germany [2]German Canc Consortium DKTK, Heidelberg, Germany [3]German Canc Res Ctr, Heidelberg, Germany [4]Univ Augsburg, Dept Computat Sci, Augsburg, Germany [5]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Orthopaed,Tongji Med Coll,Wuhan,Hubei,Peoples R China [6]LMU, Univ Hosp, Dept Orthopaed Phys Med & Rehabil, Munich, Germany [7]Tongji Univ, Shanghai Skin Dis Hosp, Inst Photomed, Sch Med, Shanghai, Peoples R China
出处:
ISSN:

关键词: Cancer metabolism Treatment prediction Computational modeling Systems biology

摘要:
BackgroundReceptor tyrosine kinase (RTK) inhibitors are frequently used to treat cancers and the results have been mixed, some of these small molecule drugs are highly successful while others show a more modest response. A high number of studies have been conducted to investigate the signaling mechanisms and corresponding therapeutic influence of RTK inhibitors in order to explore the therapeutic potential of RTK inhibitors. However, most of these studies neglected the potential metabolic impact of RTK inhibitors, which could be highly associated with drug efficacy and adverse effects during treatment.MethodsIn order to fill these knowledge gaps and improve the therapeutic utilization of RTK inhibitors a large-scale computational simulation/analysis over multiple types of cancers with the treatment responses of RTK inhibitors was performed. The pharmacological data of all eight RTK inhibitor and gene expression profiles of 479 cell lines from The Cancer Cell Line Encyclopedia were used.ResultsThe potential metabolic impact of RTK inhibitors on different types of cancers were analyzed resulting in cancer-specific (breast, liver, pancreas, central nervous system) metabolic signatures. Many of these are in line with results from different independent studies, thereby providing indirect verification of the obtained results.ConclusionsOur study demonstrates the potential of using a computational approach on signature-based-analysis over multiple cancer types. The results reveal the strength of multiple-cancer analysis over conventional signature-based analysis on a single cancer type.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2017]版:
Q2 ONCOLOGY
最新[2024]版:
Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者单位: [1]Ludwig Maximilians Univ Munchen, Inst Med Informat Biometry & Epidemiol, Munich, Germany [2]German Canc Consortium DKTK, Heidelberg, Germany [3]German Canc Res Ctr, Heidelberg, Germany
通讯作者:
通讯机构: [1]Ludwig Maximilians Univ Munchen, Inst Med Informat Biometry & Epidemiol, Munich, Germany [2]German Canc Consortium DKTK, Heidelberg, Germany [3]German Canc Res Ctr, Heidelberg, Germany
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:899 今日访问量:0 总访问量:637 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)