高级检索
当前位置: 首页 > 详情页

Co-Expression Network Analysis Identified Gene Signatures in Osteosarcoma as a Predictive Tool for Lung Metastasis and Survival

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Orthoped,Tongji Med Coll,1095 Jiefang Ave,Wuhan 430030,Hubei,Peoples R China [2]Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R China [3]Fudan Univ, Dept Breast Surg, Key Lab Breast Canc Shanghai, Shanghai Canc Ctr, Shanghai, Peoples R China [4]Xi An Jiao Tong Univ, Honghui Hosp, Dept Spine Surg, Coll Med, 76 Nanguo Rd, Xian 710054, Shanxi, Peoples R China [5]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Hematol,Tongji Med Coll,1095 Jiefang Ave,Wuhan 430030,Hubei,Peoples R China
出处:
ISSN:

关键词: gene signature LASSO Cox regression lung metastasis osteosarcoma WGCNA

摘要:
Osteosarcoma (OS) is the most common primary bone tumor, whose poor prognosis is mainly due to lung metastasis. The aim of this study is to build a practical and valid diagnostic test that can predict the risk of OS metastasis and progression. We performed weighted gene co-expression network analysis (WGCNA) on GSE21257 from the Gene Expression Omnibus (GEO) database, which contains microarray data of biopsies from OS patients. In these modules, the highest association was found between the blue module and metastasis stage (r = -0.52) by Pearson's correlation analysis. Based on Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, we derived eight clinically significant genes and constructed an eight-gene signature for metastasis status. It showed great efficacy to distinguish metastasis from non-metastasis (AUC = 0.886) and the results were validated in The Cancer Genome Atlas (TCGA) database. Functional enrichment analysis of hub genes showed that their biological processes focused on immune-related pathways, suggesting the important roles of immune cells, immune pathways and the tumor microenvironment in metastasis development. In conclusion, we discovered an efficient gene signature with great efficacy to distinguish metastasis status, which may help improve early diagnosis and treatment, enhancing the clinical outcomes of OS patients. Besides we created an effective protocol to seek for several hub genes in high-throughput data by combining WGCNA and LASSO Cox regression.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2017]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Orthoped,Tongji Med Coll,1095 Jiefang Ave,Wuhan 430030,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)