高级检索
当前位置: 首页 > 详情页

Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI ◇ 自然指数

单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Radiol, Tongji Hosp, Wuhan 430030, Hubei, Peoples R China [2]Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China [3]Yale Univ, Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT 06520 USA [4]UT Southwestern Med Ctr, Dept Radiol, 5323 Harry Hines Blvd, Dallas, TX 75390 USA [5]Yale Univ, Sch Med, Dept Urol, New Haven, CT 06520 USA [6]Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med, Beijing 100191, Peoples R China
出处:
ISSN:

摘要:
Nerve density is associated with prostate cancer (PCa) aggressiveness and prognosis. Thus far, no visualization methods have been developed to assess nerve density of PCa in vivo. We compounded propranolol-conjugated superparamagnetic iron oxide nerve peptide nanoparticles (PSN NPs), which achieved the nerve density visualization of PCa with high sensitivity and high specificity, and facilitated assessment of nerve density and aggressiveness of PCa using magnetic resonance imaging and magnetic particle imaging. Moreover, PSN NPs facilitated targeted therapy for PCa. PSN NPs increased the survival rate of mice with orthotopic PCa to 83.3% and decreased nerve densities and proliferation indexes by more than twofold compared with the control groups. The present study, thus, developed a technology to visualize the nerve density of PCa and facilitate targeted neural drug delivery to tumors to efficiently inhibit PCa progression. Our study provides a potential basis for clinical imaging and therapeutic interventions targeting nerves in PCa.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2025]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2018]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Radiol, Tongji Hosp, Wuhan 430030, Hubei, Peoples R China [2]Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
通讯作者:
通讯机构: [2]Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China [6]Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med, Beijing 100191, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)