高级检索
当前位置: 首页 > 详情页

APTAnet: an atom-level peptide-TCR interaction affinity prediction model

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ CSCD-C

单位: [1]School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China. [2]Institute of Pathology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China.
出处:
ISSN:

关键词: Immunotherapy TCR Antigen Natural language processing Transfer learning

摘要:
The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.© The Author(s) 2024.

基金:
语种:
PubmedID:
第一作者:
第一作者单位: [1]School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
共同第一作者:
通讯作者:
通讯机构: [1]School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China. [2]Institute of Pathology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)