高级检索
当前位置: 首页 > 详情页

High-throughput and proteome-wide discovery of endogenous biomolecular condensates

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn, Hubei Bioinformat & Mol Imaging Key Lab,Key Lab Bi, Wuhan, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Inst Liver & Gastrointestinal Dis, Tongji Med Coll,Dept Gastroenterol,Hubei Key Lab H, Wuhan, Hubei, Peoples R China
出处:
ISSN:

摘要:
Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes. High-throughput proteome-wide methods for identifying endogenous proteins that phase separate or partition into condensates during certain physiological events are needed but remain a challenge. Now, a high-throughput, unbiased and quantitative strategy can identify endogenous biomolecular condensates and screen proteins involved in phase separation on a proteome-wide scale.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 化学
小类 | 1 区 化学:综合
最新[2025]版:
大类 | 1 区 化学
小类 | 1 区 化学:综合
JCR分区:
出版当年[2022]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY
最新[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn, Hubei Bioinformat & Mol Imaging Key Lab,Key Lab Bi, Wuhan, Hubei, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)