高级检索
当前位置: 首页 > 详情页

Sleep-phasic heart rate variability predicts stress severity: Building a machine learning-based stress prediction model

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ SSCI

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Cardiol,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,1095 Jie Fang Rd,Wuhan 430030,Peoples R China [3]First Hosp Wuhan City, Dept Cardiol, Wuhan, Peoples R China [4]First Hosp Wuhan City, Dept Neurol, Wuhan, Peoples R China [5]Huawei Technol Co Ltd, Shenzhen, Peoples R China [6]Fudan Univ, Shanghai Med Coll, Dept Pharmacol, 130 Dong An Rd, Shanghai 200032, Peoples R China
出处:
ISSN:

关键词: cardiopulmonary coupling cyclic alternating pattern heart rate variability machine learning sleep stages smart device stress

摘要:
We propose a novel approach for predicting stress severity by measuring sleep phasic heart rate variability (HRV) using a smart device. This device can potentially be applied for stress self-screening in large populations. Using a Holter electrocardiogram (ECG) and a Huawei smart device, we conducted 24-h dual recordings of 159 medical workers working regular shifts. Based on photoplethysmography (PPG) and accelerometer signals acquired by the Huawei smart device, we sorted episodes of cyclic alternating pattern (CAP; unstable sleep), non-cyclic alternating pattern (NCAP; stable sleep), wakefulness, and rapid eye movement (REM) sleep based on cardiopulmonary coupling (CPC) algorithms. We further calculated the HRV indices during NCAP, CAP and REM sleep episodes using both the Holter ECG and smart-device PPG signals. We later developed a machine learning model to predict stress severity based only on the smart device data obtained from the participants along with a clinical evaluation of emotion and stress conditions. Sleep phasic HRV indices predict individual stress severity with better performance in CAP or REM sleep than in NCAP. Using the smart device data only, the optimal machine learning-based stress prediction model exhibited accuracy of 80.3 %, sensitivity 87.2 %, and 63.9 % for specificity. Sleep phasic heart rate variability can be accurately evaluated using a smart device and subsequently can be used for stress predication.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 心理学
小类 | 2 区 心理学 3 区 精神病学 3 区 心理学:应用
最新[2025]版:
大类 | 2 区 心理学
小类 | 2 区 心理学 3 区 精神病学 3 区 心理学:应用
JCR分区:
出版当年[2022]版:
Q1 PSYCHOLOGY Q2 PSYCHIATRY Q2 PSYCHOLOGY, APPLIED
最新[2023]版:
Q1 PSYCHOLOGY Q2 PSYCHIATRY Q2 PSYCHOLOGY, APPLIED

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Cardiol,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,1095 Jie Fang Rd,Wuhan 430030,Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Cardiol,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,1095 Jie Fang Rd,Wuhan 430030,Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)