高级检索
当前位置: 首页 > 详情页

ROS-Suppression Nanoplatform Combined Activation of STAT3/Bcl-2 Pathway for Preventing Myocardial Infarction in Mice

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan 030032, China. [2]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430030, China. [3]Cardiology Department, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030032, China. [4]Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030032, China. [5]The First Clinical Medical College, Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China. [6]The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China.
出处:
ISSN:

关键词: myocardial infarction responsive drug release oxidative stress apoptosis cardioprotection

摘要:
Myocardial infarction (MI) is the leading cause of death worldwide. The most effective way to treat myocardial infarction is to rescue ischemic cardiomyocytes. After an ischemic event, the overproduction of reactive oxygen species (ROS) is a key driver of myocardial injury. The produced ROS affects mitochondrial function and induces apoptosis in cardiomyocytes. This was accomplished by constructing platelet-membrane-encapsulated ROS-responsive drug-releasing nanoparticles (PMN@NIC-MalNPs) to deliver malonate and niclosamide (NIC). The results revealed that PMN@NIC-MalNPs degraded and released malonate and niclosamide in a high-level ROS microenvironment, effectively reducing the oxidative stress and apoptosis rate. By enhancing basal mitochondrial oxygen consumption rate (OCR), adenosine triphosphate (ATP) production, and spare respiratory capacity (SRC) in vitro, reduced the oxidative stress levels and restored mitochondrial function. In vivo studies revealed that the PMN@NIC-MalNPs improved cardiac dysfunction, inhibited succinate dehydrogenase (SDH) activity, increased ATP production, and reduced the myocardial infarct size in myocardial infarction model mice. Further, transcriptome analysis and Western blot revealed that PMN@NIC-MalNPs prevented apoptosis by activating the expressions of the signal transducer and activator of transcription 3 (STAT3) and Bcl-2, and inhibiting the expression of Bax. Thus, this study provides a novel therapeutic solution for treating myocardial infarction and predicting the viability of an antioxidant and antiapoptotic therapeutic solution in the treatment of myocardial injury.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 材料科学
小类 | 2 区 材料科学:综合 2 区 纳米科技
最新[2025]版:
大类 | 2 区 材料科学
小类 | 2 区 材料科学:综合 2 区 纳米科技
JCR分区:
出版当年[2022]版:
Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan 030032, China. [2]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430030, China.
共同第一作者:
通讯作者:
通讯机构: [1]Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan 030032, China. [2]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430030, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)