高级检索
当前位置: 首页 > 详情页

Predicting ICU readmission risks in intracerebral hemorrhage patients: Insights from machine learning models using MIMIC databases

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,1095 Jiefang Ave,Wuhan 430030,Peoples R China
出处:
ISSN:

关键词: Intracerebral hemorrhage Machine learning MIMIC databases ICU readmission

摘要:
Background: Intracerebral hemorrhage (ICH) is a stroke subtype characterized by high mortality and complex post-event complications. Research has extensively covered the acute phase of ICH; however, ICU readmission determinants remain less explored. Utilizing the MIMIC-III and MIMIC-IV databases, this investigation develops machine learning (ML) models to anticipate ICU readmissions in ICH patients.Methods: Retrospective data from 2242 ICH patients were evaluated using ICD-9 codes. Recursive feature elimination with cross-validation (RFECV) discerned significant predictors of ICU readmissions. Four ML mod-els-AdaBoost, RandomForest, LightGBM, and XGBoost-underwent development and rigorous validation. SHapley Additive exPlanations (SHAP) elucidated the effect of distinct features on model outcomes.Results: ICU readmission rates were 9.6% for MIMIC-III and 10.6% for MIMIC-IV. The LightGBM model, with an AUC of 0.736 (95% CI: 0.668-0.801), surpassed other models in validation datasets. SHAP analysis revealed hydrocephalus, sex, neutrophils, Glasgow Coma Scale (GCS), specific oxygen saturation (SpO2) levels, and creatinine as significant predictors of readmission.Conclusion: The LightGBM model demonstrates considerable potential in predicting ICU readmissions for ICH patients, highlighting the importance of certain clinical predictors. This research contributes to optimizing patient care and ICU resource management. Further prospective studies are warranted to corroborate and enhance these predictive insights for clinical utilization.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 临床神经病学 3 区 神经科学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 临床神经病学 3 区 神经科学
JCR分区:
出版当年[2022]版:
Q2 CLINICAL NEUROLOGY Q2 NEUROSCIENCES
最新[2023]版:
Q1 CLINICAL NEUROLOGY Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,1095 Jiefang Ave,Wuhan 430030,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)