高级检索
当前位置: 首页 > 详情页

The role of the SIRT1-BMAL1 pathway in regulating oxidative stress in the early development of ischaemic stroke

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China. [2]The Ninth Clinical Medical College Affiliated with Shanxi Medical University, Taiyuan, China. [3]Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, China. [4]School of Public Health, Shanxi Medical University, Taiyuan, China. [5]The First Clinical Medical College Affiliated with Shanxi Medical University, Taiyuan, China. [6]Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinic College of Medicine, Beijing, China. [7]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
出处:
ISSN:

摘要:
Oxidative stress is the primary cause of ischaemic stroke and is closely related to circadian rhythm. However, the mechanism by which circadian rhythm regulates oxidative stress in ischaemic stroke remains elusive. The Silent Information Regulator 1 (SIRT1) controls circadian rhythm by activating the transcription of the circadian clock core protein Basic Helix-Loop-Helix ARNT Like 1 (BMAL1) through deacetylation. Studies have shown that the SIRT1-BMAL1 pathway can regulate oxidative stress. To investigate its correlation with oxidative stress, we examined the expression levels and influencing factors of SIRT1-BMAL1 at different times in ischaemic stroke patients and analyzed their clinical indexes, oxidative stress, and inflammatory factor indicators. The expression levels of oxidative stress and inflammatory factor indicators, including malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-α), SIRT1, and BMAL1, were detected in ischaemic stroke patients within 4.5 h of onset and in non-stroke patients. Patients were divided into four subgroups based on onset time: subgroup 1 (0:00-05:59); subgroup 2 (06:00-11:59); subgroup 3 (12:00-17: 59); and subgroup 4 (18:00-23:59). Our results showed higher MDA, IL-6, and TNF-α levels, and lower SOD, SIRT1, and BMAL1 levels in ischaemic stroke patients compared to control patients (P < 0.05). Among the four subgroups, the content of MDA, IL-6, and TNF-α was highest in patients with ischaemic stroke onset from subgroup 2 (06:00-11:59), while the expression levels of SOD, BMAL1, and SIRT1 were lowest in patients with ischaemic stroke in subgroup 2. Additionally, myeloperoxidase (MPO) reached the highest value showing the same trends consistent with MDA, IL-6, and TNF-ɑ and opposite trends consistent with SOD, BMAL1, and SIRT1. However, triglycerides (TGs), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), immediate blood glucose, immediate diastolic blood pressure, immediate systolic blood pressure, and homocysteine (HCY) did not show any statistically significant circadian rhythm changes (P > 0.05). Our findings suggest that the SIRT1-BMAL1 pathway may be involved in early oxidative stress in ischaemic stroke, which may be related to MPO.© 2024. The Author(s).

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China. [2]The Ninth Clinical Medical College Affiliated with Shanxi Medical University, Taiyuan, China.
通讯作者:
通讯机构: [1]Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China. [7]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)