高级检索
当前位置: 首页 > 详情页

CYP2J2-derived epoxyeicosatrienoic acids protect against doxorubicin-induced cardiotoxicity by reducing oxidative stress and apoptosis via activation of the AMPK pathway

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Cardiol,Dept Internal Med, Wuhan 430030, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, Wuhan 430030, Peoples R China
出处:

关键词: Cardiotoxicity Doxorubicin EETs Apoptosis Oxidative stress AMPK

摘要:
Objective: Despite the widespread use of doxorubicin (DOX) in chemotherapy, it can cause cardiotoxicity, which severely limits its potential clinical use. CYP2J2-derived epoxyeicosatrienoic acids (EETs) exert cardioprotective effects by maintaining cardiac homeostasis. The roles and latent mechanisms of EETs in DOX cardiotoxicity remain uncertain. We investigated these aspects using mouse tissue and cell culture models.Methods: C57BL/6J mice were injected with rAAV9-CYP2J2 or a control vector via the caudal vein. A five-week intraperitoneal course of DOX (5 mg/kg per week) was administered. After pretreatment with 14,15-EET, H9C2 cells were treated for 24-h with DOX, to use as a cell model to verify the role of EETs in cardiotoxicity in vitro.Results: CYP2J2 overexpression mitigated DOX-induced cardiotoxicity, as shown by the diminished cardiac injury marker levels, improved heart function, reduced oxidative stress, and inhibition of myocardial apoptosis in vivo. These protective roles are associated with the enhancement of antioxidant and anti-apoptotic abilities and the activation of the AMPK pathway. 14,15-EET suppresses DOX-induced oxidative stress, mitochondrial dysfunction, and apoptosis in H9C2 cells. AMPK knockdown partially abolished the cardioprotective effects of 14,15-EET against oxidative damage and apoptosis in DOX-treated cells, suggesting that AMPK is responsible for EET-mediated protection against cardiotoxicity.Conclusion: CYP2J2-derived EETs confer myocardial protection against DOX-induced toxicity by activating the AMPK pathway, which reduces oxidative stress, mitochondrial dysfunction, and apoptosis.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 4 区 综合性期刊
小类 | 4 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Cardiol,Dept Internal Med, Wuhan 430030, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)