高级检索
当前位置: 首页 > 详情页

Mitigation of Sepsis-Induced Acute Lung Injury by BMSC-Derived Exosomal miR-125b-5p Through STAT3-Mediated Suppression of Macrophage Pyroptosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Crit Care Med,1095 Jiefang Ave,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Emergency Dept,Wuhan,Peoples R China
出处:
ISSN:

关键词: mesenchymal stem cells exosomes acute lung injury machine learning miR-125b-5p STAT3

摘要:
Introduction: Sepsis is a syndrome characterized by high morbidity and mortality rates. One of its most severe complications is acute lung injury, which exhibits a multitude of clinical and biological features, including macrophage pyroptosis. This study investigates the regulatory effects of exosomes derived from Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) on sepsis-associated acute lung injury (ALI) and explores the potential mechanisms mediated by exosomal miRNAs.Methods: Exosomes were isolated from primary BMSCs of adult C57BL/6J mice using differential centrifugation. Their uptake and distribution in both in vitro and in vivo contexts were validated. Key sepsis-associated hub gene signal transducer and activator of transcription 3 (STAT3) and its upstream non-coding miR-125b-5p were elucidated through a combination of bioinformatics, machine learning, and miRNA sequencing. Subsequently, the therapeutic potential of BMSC-derived exosomes in alleviating sepsis-induced acute lung injury was substantiated. Moreover, the functionalities of miR-125b-5p and STAT3 were corroborated through miR-125b-5p inhibitor and STAT3 agonist interventions, employing gain and loss-of-function strategies both in vitro and in vivo. Finally, a dual-luciferase reporter assay reaffirmed the interaction between miR-125b-5p and STAT3.Results: We isolated exosomes from primary BMSCs and confirmed their accumulation in the mouse lung as well as their uptake by macrophages in vitro. This study identified the pivotal sepsis-associated hub gene STAT3 and demonstrated that exosomes derived from BMSCs can target STAT3, thereby inhibiting macrophage pyroptosis. MiR-125b-5p inhibition experiments showed that exosomes mitigate macrophage pyroptosis and lung injury by delivering miR-125b-5p. STAT3 overexpression experiments validated that miR-125b-5p reduces macrophage pyroptosis and lung injury by suppressing STAT3. Furthermore, a dual-luciferase reporter assay confirmed the binding interaction between miR-125b-5p and STAT3.Conclusion: Exosomes derived from BMSCs, serving as carriers for delivering miR-125b-5p, can downregulate STAT3, thereby inhibiting macrophage pyroptosis and alleviating sepsis-associated ALI. These significant findings provide valuable insights into the potential development of ALI therapies centred around exosomes derived from BMSC.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 药学 3 区 纳米科技
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 药学 3 区 纳米科技
JCR分区:
出版当年[2021]版:
Q1 PHARMACOLOGY & PHARMACY Q2 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Crit Care Med,1095 Jiefang Ave,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Emergency Dept,Wuhan,Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Crit Care Med,1095 Jiefang Ave,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Emergency Dept,Wuhan,Peoples R China [*1]Department of Critical Care Medicine,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,1095 Jiefang Avenue,Qiaokou District,Wuhan,430030,People’s Republic of China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)