高级检索
当前位置: 首页 > 详情页

An in vitro and in vivo study: Valencene protects cartilage and alleviates the progression of osteoarthritis by anti-oxidative stress and anti-inflammatory effects

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Orthopedics,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,Hubei 430030,China
出处:
ISSN:

关键词: Valencene ROS NRF2 Inflammation Osteoarthritis Antarthritic

摘要:
Osteoarthritis (OA) is a heterogeneous disease involving the whole joint. The pathogenesis involves oxidative stress levels and chronic inflammation, and Valencene (VA) has excellent anti-inflammatory and antioxidant stress abilities.The objective was to study the effects of VA therapy on combating oxidative stress and to evaluate the protective effect of chondrocytes to alleviate the progression of OA.C57BL6J mouse chondrocytes were used as the primary cells in this study. Mouse chondrocytes were stimulated with IL-1β, and VA was administered in different concentrations. Reactive oxygen species (ROS) assay kits, western blotting, cellular immunofluorescence, and scanning microscopy were used to evaluate VA's antioxidant stress mechanism, anti-inflammatory effect, and cartilage protective ability. The mouse arthritis model constructed by destabilization of medial meniscus (DMM) was observed by micro-CT scan and histology after different treatments.We found that VA can reverse the rise of ROS under IL-1β, the degeneration of the cartilage extracellular matrix, and the production of inflammatory mediators. In terms of mechanism, VA activated NRF2/HO-1/NQO1 pathway, thus enhancing ROS clearance. The phosphorylation of IκBα is inhibited, which further reduces the downstream phosphorylation of P65 in nuclear factor-κB (NF-κB) signaling. In addition, VA inhibited mitogen-activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK, and P-P38, inhibiting the production of inflammatory mediators and thus inhibiting Aggrecan and Collagen Type II (COL2)degeneration. In vivo, VA reduced DMM-induced osteophytes and spurs, suppressed subchondral bone destruction, and reduced articular cartilage erosion.Our study demonstrated that VA is an effective candidate for OA treatment.Copyright © 2023. Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 免疫学 2 区 药学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 药学 3 区 免疫学
JCR分区:
出版当年[2021]版:
Q1 PHARMACOLOGY & PHARMACY Q2 IMMUNOLOGY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q2 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Department of Orthopedics,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,Hubei 430030,China
通讯作者:
通讯机构: [1]Department of Orthopedics,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,Hubei 430030,China [*1]1095 Jiefang Avenue, Wuhan City, Hubei Province, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)