高级检索
当前位置: 首页 > 详情页

A clinically practical model for the preoperative prediction of lymph node metastasis in bladder cancer: a multicohort study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Sun Yat sen Univ, Sun Yat sen Mem Hosp, Dept Urol, Guangzhou 510120, Guangdong, Peoples R China [2]Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Guangzhou 510120, Guangdong, Peoples R China [3]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan 430030,Hubei,Peoples R China [4]Guangdong Prov Clin Res Ctr Urol Dis, Guangzhou 510120, Guangdong, Peoples R China
出处:
ISSN:

摘要:
BackgroundThe aim of this study was to construct a clinically practical model to precisely predict lymph node (LN) metastasis in bladder cancer patients.MethodsFour independent cohorts were included. The least absolute shrinkage and selection operator regression with multivariate logistic regression were applied. The diagnostic efficacy of LN score and CT/MRI was compared by accuracy, sensitivity, specificity, and area under curve (AUC).ResultsA total of 606 patients were included to develop a basic prediction model. After multistep gene selection, the LN metastasis prediction model was constructed with 5 genes. The model can accurately predict LN metastasis with an AUC of 0.781. For clinically practical use, we transformed the model into a Fast LN Scoring System using the SYSMH cohort (n = 105). High LN score patients exhibited a 72.2% LN metastasis rate, while low LN score patients showed a 3.4% LN metastasis rate. The LN score achieved a superior accuracy than CT/MRI (0.882 vs. 0.727). Application of LN score can correct the diagnosis of 88% (22/25) patients who were misdiagnosed by CT/MRI.DiscussionThe clinically practical LN score can precisely, rapidly, and conveniently predict LN status, which will assist preoperative diagnosis for LN metastasis and guide precise therapy.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2021]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Sun Yat sen Univ, Sun Yat sen Mem Hosp, Dept Urol, Guangzhou 510120, Guangdong, Peoples R China [2]Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Guangzhou 510120, Guangdong, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Sun Yat sen Univ, Sun Yat sen Mem Hosp, Dept Urol, Guangzhou 510120, Guangdong, Peoples R China [2]Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Guangzhou 510120, Guangdong, Peoples R China [4]Guangdong Prov Clin Res Ctr Urol Dis, Guangzhou 510120, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:591 今日访问量:1 总访问量:443 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)