高级检索
当前位置: 首页 > 详情页

The Effect of Pulling Angle on Rotator Cuff Mechanical Properties in a Canine In Vitro Model

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China. [2]Department of Orthopedics,Tongji Hospital,Huazhong University of Science and Technology,Wuhan 430030,China. [3]Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA. [4]Department of Orthopedic Surgery, University of Tennessee Health Science Center College of Medicine, Chattanooga, TN 37450, USA.
出处:
ISSN:

关键词: rotator cuff canine model biomechanics biomechanical testing pulling angle

摘要:
The objective of this study was to examine the effect of pulling angle on time-zero mechanical properties of intact infraspinatus tendon or infraspinatus tendon repaired with the modified Mason-Allen technique in a canine model in vitro. Thirty-six canine shoulder samples were used. Twenty intact samples were randomly allocated into functional pull (135°) and anatomic pull (70°) groups (n = 10 per group). The remaining sixteen infraspinatus tendons were transected from the insertion and repaired using the modified Mason-Allen technique before being randomly allocated into functional pull or anatomic pull groups (n = 8 per group). Load to failure testing was performed on all specimens. The ultimate failure load and ultimate stress of the functional pulled intact tendons were significantly lower compared with anatomic pulled tendons (1310.2 ± 167.6 N vs. 1687.4 ± 228.2 N, p = 0.0005: 55.6 ± 8.4 MPa vs. 67.1 ± 13.3 MPa, p = 0.0334). For the tendons repaired with the modified Mason-Allen technique, no significant differences were observed in ultimate failure load, ultimate stress or stiffness between functional pull and anatomic pull groups. The variance of pulling angle had a significant influence on the biomechanical properties of the rotator cuff tendon in a canine shoulder model in vitro. Load to failure of the intact infraspinatus tendon was lower at the functional pulling position compared to the anatomic pulling position. This result indicates that uneven load distribution across tendon fibers under functional pull may predispose the tendon to tear. However, this mechanical character is not presented after rotator cuff repair using the modified Mason-Allen technique.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 工程技术
小类 | 3 区 工程:生物医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)