高级检索
当前位置: 首页 > 详情页

FGF21 at physiological concentrations regulates vascular endothelial cell function through multiple pathways

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Inst Gerontol, Tongji Med Coll, Wuhan, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Basic Med, Dept Pathogen Biol, Wuhan, Peoples R China [3]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Wuhan, Peoples R China
出处:
ISSN:

关键词: Fibroblast growth factor 21 Human umbilical vascular endothelial cells Transcriptome sequencing Endothelial function FGF21-regulated gene

摘要:
Cardiovascular diseases are closely associated with dysfunction of vascular endothelial cells (VECs), which can be influenced by various intrinsic and extrinsic factors, including fibroblast growth factor 21 (FGF21), but the effects of serum FGF21 on VECs remain unclear. We performed a cross-sectional study nested within a pro-spective cohort to assess the range of physiological concentrations of fasting serum FGF21 in 212 healthy in-dividuals. We also treated human umbilical VECs (HUVECs) with recombinant FGF21 at different concentrations. The effects of FGF21 treatment on glycolysis, nitric oxide release and reduction of intracellular reactive oxygen species were assessed. The cells were also collected for RNA transcriptomic sequencing to investigate the po-tential mechanisms induced by FGF21 treatment. In addition, the roles of SIRT1 in the regulation of FGF21 were evaluated by SIRT1 knockdown. The results showed that the serum FGF21 concentration in healthy individuals ranged from 15.70 to 499.96 pg/mL and was positively correlated with age and pulse wave velocity. FGF21 at 400 pg/mL was sufficient to enhance glycolysis, increase nitric oxide release and protect cells from H2O2-induced oxidative damage. The upregulated genes after FGF21 treatment were mostly enriched in metabolic pathways, whereas the downregulated genes were mostly enriched in inflammation and apoptosis signaling pathways. Moreover, SIRT1 may be involved in the regulation of some genes by FGF21. In conclusion, our data indicate that FGF21 at a level within the physiological concentration range has a beneficial effect on HUVECs and that this effect may partly depend on the regulation of SIRT1.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 生物学
小类 | 1 区 生物物理 2 区 生化与分子生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 生物物理 3 区 生化与分子生物学
JCR分区:
出版当年[2020]版:
Q1 BIOPHYSICS Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOPHYSICS Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Inst Gerontol, Tongji Med Coll, Wuhan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:414 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)