In the proposed network, the features were first extracted from the gonioscopically obtained anterior segment photographs using the densely-connected high-resolution network. Then the useful information is further strengthened using the hybrid attention module to improve the classification accuracy. Between October 30, 2020, and January 30, 2021, a total of 146 participants underwent glaucoma screening. One thousand seven hundred eighty original images of the ACA were obtained with the gonioscope and slit lamp microscope. After data augmentation, 4457 images are used for the training and validation of the HahrNet, and 497 images are used to evaluate our algorithm. Experimental results demonstrate that the proposed HahrNet exhibits a good performance of 96.2% accuracy, 99.0% specificity, 96.4% sensitivity, and 0.996 area under the curve (AUC) in classifying the ACA test dataset. Compared with several deep learning-based classification methods and nine human readers of different levels, the HahrNet achieves better or more competitive performance in terms of accuracy, specificity, and sensitivity. Indeed, the proposed ACA classification method will provide an automatic and accurate technology for the grading of glaucoma.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
基金:
National Natural Science Foundation of China [81974133, 61871440]
语种:
外文
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类|2 区医学
小类|1 区生化研究方法2 区光学2 区核医学
最新[2025]版:
大类|3 区医学
小类|2 区生化研究方法3 区光学3 区核医学
JCR分区:
出版当年[2020]版:
Q1OPTICSQ2RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGINGQ2BIOCHEMICAL RESEARCH METHODS
最新[2023]版:
Q2BIOCHEMICAL RESEARCH METHODSQ2OPTICSQ2RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
第一作者单位:[1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn, Minist Educ,Key Lab Mol Biophys, Wuhan 430074, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
Zhou Q. U. A. N.,Guo J. I. N. G. M. I. N.,Chen Z. H. I. Q. I.,et al.Deep learning-based classification of the anterior chamber angle in glaucoma gonioscopy[J].BIOMEDICAL OPTICS EXPRESS.2022,13(9):4668-4683.doi:10.1364/BOE.465286.
APA:
Zhou, Q. U. A. N.,Guo, J. I. N. G. M. I. N.,Chen, Z. H. I. Q. I.,Chen, W. E., I,Deng, C. H. A. O. H. U. A....&Zhang, X. U. M. I. N. G..(2022).Deep learning-based classification of the anterior chamber angle in glaucoma gonioscopy.BIOMEDICAL OPTICS EXPRESS,13,(9)
MLA:
Zhou, Q. U. A. N.,et al."Deep learning-based classification of the anterior chamber angle in glaucoma gonioscopy".BIOMEDICAL OPTICS EXPRESS 13..9(2022):4668-4683