高级检索
当前位置: 首页 > 详情页

Deep learning-based classification of the anterior chamber angle in glaucoma gonioscopy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn, Minist Educ,Key Lab Mol Biophys, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Ophthalmol,Wuhan 430030,Peoples R China
出处:
ISSN:

摘要:
In the proposed network, the features were first extracted from the gonioscopically obtained anterior segment photographs using the densely-connected high-resolution network. Then the useful information is further strengthened using the hybrid attention module to improve the classification accuracy. Between October 30, 2020, and January 30, 2021, a total of 146 participants underwent glaucoma screening. One thousand seven hundred eighty original images of the ACA were obtained with the gonioscope and slit lamp microscope. After data augmentation, 4457 images are used for the training and validation of the HahrNet, and 497 images are used to evaluate our algorithm. Experimental results demonstrate that the proposed HahrNet exhibits a good performance of 96.2% accuracy, 99.0% specificity, 96.4% sensitivity, and 0.996 area under the curve (AUC) in classifying the ACA test dataset. Compared with several deep learning-based classification methods and nine human readers of different levels, the HahrNet achieves better or more competitive performance in terms of accuracy, specificity, and sensitivity. Indeed, the proposed ACA classification method will provide an automatic and accurate technology for the grading of glaucoma.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 1 区 生化研究方法 2 区 光学 2 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生化研究方法 3 区 光学 3 区 核医学
JCR分区:
出版当年[2020]版:
Q1 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 BIOCHEMICAL RESEARCH METHODS
最新[2023]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q2 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn, Minist Educ,Key Lab Mol Biophys, Wuhan 430074, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)