高级检索
当前位置: 首页 > 详情页

Sphingosine-1-Phosphate Protects Against the Development of Cardiac Remodeling via Sphingosine Kinase 2 and the S1PR2/ERK Pathway

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 卓越:梯队期刊

单位: [1]Huazhong Univ Sci & Technol, Wuhan Puai Hosp, Tongji Med Coll, Wuhan 4 Hosp, Wuhan 430030, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Internal Med,Div Cardiol, Wuhan 430030, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Hubei Key Lab Genet & Mol Mech Cardiol Disorders, Wuhan 430030, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Rheumatol & Immunol, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: sphingosine-1-phosphate cardiac remodeling sphingosine kinase 2 sphingosine-1-phosphate receptor extracellular regulated protein kinase

摘要:
Objective Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure. Thus, there is an urgent need for more effective strategies to aid in cardiac protection. Our previous work found that sphingosine-1-phosphate (S1P) could ameliorate cardiac hypertrophy. In this study, we aimed to investigate whether S1P could prevent cardiac fibrosis and the associated mechanisms in cardiac remodeling. Methods Eight-week-old male C57BL/6 mice were randomly divided into a sham, transverse aortic constriction (TAC) or a TAC+S1P treatment group. Results We found that S1P treatment improved cardiac function in TAC mice and that the cardiac fibrosis ratio in the TAC+S1P group was significantly lower and was accompanied by a decrease in alpha-smooth muscle actin (alpha-SMA) and collagen type I (COL I) expression compared with the TAC group. We also found that one of the key S1P enzymes, sphingosine kinase 2 (SphK2), which was mainly distributed in cytoblasts, was downregulated in the cardiac remodeling case and recovered after S1P treatment in vivo and in vitro. In addition, our in vitro results showed that S1P treatment activated extracellular regulated protein kinases (ERK) phosphorylation mainly through the S1P receptor 2 (S1PR2) and spurred p-ERK transposition from the cytoplasm to cytoblast in H9c2 cells exposed to phenylephrine. Conclusion These findings suggest that SphK2 and the S1PR2/ERK pathway may participate in the anti-remodeling effect of S1P on the heart. This work therefore uncovers a novel potential therapy for the prevention of cardiac remodeling.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
JCR分区:
出版当年[2020]版:
Q4 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Wuhan Puai Hosp, Tongji Med Coll, Wuhan 4 Hosp, Wuhan 430030, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)