高级检索
当前位置: 首页 > 详情页

High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 Axis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,1095 Jiefang Rd,Wuhan 430030,Hubei,Peoples R China [2]Huazhong Univ Sci & Technol,Canc Ctr Tongji Hosp,Tongji Med Coll,1095 Jiefang Rd,Wuhan 430030,Peoples R China
出处:
ISSN:

关键词: Alzheimer's disease rTMS Oxidative stress Neuroinflammation Synaptic plasticity Neuron loss

摘要:
Objective: Glutamate mediated excitotoxicity, such as oxidative stress, neuroinflammation, synaptic loss and neuronal death, is ubiquitous in Alzheimer's disease (AD). Our previous study found that 15 Hz repetitive transcranial magnetic stimulation (rTMS) could reduce cortical excitability. The purpose of this study was to explore the therapeutic effect of higher frequency rTMS on 3xTg-AD model mice and further explore the mechanisms of rTMS. Methods: First, WT and 3xTg-AD model mice received 25 Hz rTMS treatment for 21 days. The Morris water maze test was used to evaluate the cognitive function. The levels of A beta and neuroinflammation were assessed by ELISA and immunofluorescence. Oxidative stress was quantified by biochemical assay kits. Brain glucose metabolism was assessed by F-18-FDG PET. Apoptosis was assessed by western blot and TUNEL staining. Synaptic plasticity and PI3K/Akt/GLT-1 pathway related protein expression were assessed by western blot. Next, to explore the activity of PI3K/Akt in the therapeutic effect of rTMS, 3xTg-AD model mice were given LY294002 intervention and rTMS treatment for 21 days, the experimental method was the same as before. Results: We found that 25 Hz rTMS could improve cognitive function of 3xTg-AD model mice, reduce hippocampal A beta 1-42 levels, ameliorate oxidative stress and improve glucose metabolism. rTMS alleviated neuroinflammatory response, enhanced synaptic plasticity and reduced neuronal loss and cell apoptosis, accompanied by activation of PI3K/Akt/GLT-1 pathway. After administration of PI3K/Akt inhibitor LY294002, 25 Hz rTMS could not improve the cognitive function and reduce neuron damage of 3xTg-AD model mice, nor could it upregulate the expression of GLT-1, indicating that its therapeutic and protective effects required the involvement of PI3K/Akt/GLT-1 pathway. Conclusion: rTMS exerts protective role for AD through regulating multiple pathological processes. Meanwhile, this study revealed the key role of PI3K/Akt/GLT-1 pathway in the treatment of AD by rTMS, which might be a new target.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 生物学
小类 | 1 区 生化与分子生物学
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生化与分子生物学
JCR分区:
出版当年[2020]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,1095 Jiefang Rd,Wuhan 430030,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:1 总访问量:414 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)