Purpose: To explore the application of computer-aided detection (CAD) software on automatically detecting nodules under standard-dose CT (SDCT) and low-dose CT (LDCT) scans with different parameters including definition modes and blending levels of adaptive statistical iterative reconstruction (ASIR), whose influence was important to optimize radiology workflow serving for clinical work. Materials and methods: 117 patients underwent SDCT and LDCT scans. The comprehensive performance of CAD in detect pulmonary nodules including under different ASIR blending levels (0%, 60%, and 80%) and high definition (HD) or non-HD modes were assessed. The true positive (TP) rate, false positive (FP) rate and the sensitivity were recorded. Results: The stand-alone sensitivity of CAD system was 78.03% (515/660) in SDCT images and 70.15% (456/650) on LDCT images (p < 0.05). The sensitivity of CAD system to pulmonary nodules under non-HD mode was higher than that under HD mode. The detectability of nodules in images reconstructed with 60% and 80% ASIR was found significantly superior to that with 0% ASIR (p < 0.001). The overall sensitivity of CAD system on LDCT images reconstructed with 60% ASIR under HD mode was greater than that with 0% ASIR (p < 0.05), but lower than that with 80% ASIR. However, under non-HD mode, CAD demonstrated a comparable performance on LDCT images reconstructed with 60% ASIR to those reconstructed with 80% ASIR. Conclusion: Using the CAD system to detect pulmonary nodules on LDCT images with appropriate levels of ASIR could maintain high diagnostic sensitivity while reducing the radiation dose, which is useful to optimize the radiology workflow.
基金:
Key Project of Science and Technology Committee of Wuhan, China [2018060401011326]
第一作者单位:[1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Radiol,Jiefang Dadao 1095,Wuhan 430030,Peoples R China
通讯作者:
通讯机构:[1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Radiol,Jiefang Dadao 1095,Wuhan 430030,Peoples R China[*1]Department of Radiology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Jiefang Dadao 1095 (#),Wuhan 430030,PR China.
推荐引用方式(GB/T 7714):
Hu Qiongjie,Chen Chong,Kang Shichao,et al.Application of computer-aided detection (CAD) software to automatically detect nodules under SDCT and LDCT scans with different parameters[J].COMPUTERS IN BIOLOGY AND MEDICINE.2022,146:doi:10.1016/j.compbiomed.2022.105538.
APA:
Hu,Qiongjie,Chen,Chong,Kang,Shichao,Sun,Ziyan,Wang,Yujin...&Wang,Shaofang.(2022).Application of computer-aided detection (CAD) software to automatically detect nodules under SDCT and LDCT scans with different parameters.COMPUTERS IN BIOLOGY AND MEDICINE,146,
MLA:
Hu,Qiongjie,et al."Application of computer-aided detection (CAD) software to automatically detect nodules under SDCT and LDCT scans with different parameters".COMPUTERS IN BIOLOGY AND MEDICINE 146.(2022)