高级检索
当前位置: 首页 > 详情页

3D printed magnesium-doped ?-TCP gyroid scaffold with osteogenesis, angiogenesis, immunomodulation properties and bone regeneration capability in vivo

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Orthoped Surg,Tongji Med Coll,1095 Jiefang Ave,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
出处:

关键词: Magnesium ?-TCP Osteogenesis Angiogenesis Immunomodulation

摘要:
Bioceramics have been used in orthopedic surgery for several years. Magnesium (Mg) is an essential element in bone tissue and plays an important role in bone metabolism. Mg-doped bioceramics has attracted the attention of researchers recently. However, the optimal doping amount of Mg in beta-TCP and the immunomodulatory property of Mg-doped beta-TCP (Mg-TCP) have not been determined yet. In this study, beta-TCP scaffolds doped with different contents of magnesium oxide (0 wt%, 1 wt%, 3 wt%, and 5 wt%) with gyroid structure were printed by digital light processing (DLP) method, and the physicochemical and biological functions were then investigated. Mgdoping improved the physicochemical properties of the beta-TCP scaffolds. In vitro experiments confirmed that the doping of Mg in beta-TCP scaffolds promoted the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenic differentiation of endothelial progenitor cells (EPCs), where the 5Mg-TCP has the optimal properties when using the "one cell type" method. It was also found that all Mg-TCP facilitated the polarization of RAW264.7 cells to the M2 phenotype, especially the 3Mg-TCP. However, 3Mg-TCP displayed the optimal osteogenic and angiogenic potential when using a "multiple cell type" method, which referred to culturing the BMSCs or EPCs in the macrophage-conditioned medium. Finally, the in vivo experiments were conducted and the results confirmed that the 3Mg-TCP scaffolds possessed the satisfying bone defect repair capability both after 6 and 12 weeks of implantation. This study suggests that 3Mg-TCP scaffolds provide the optimal biological performance and thus have the potential for clinical translation.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 材料科学:生物材料
JCR分区:
出版当年[2020]版:
最新[2023]版:
Q2 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Orthoped Surg,Tongji Med Coll,1095 Jiefang Ave,Wuhan 430030,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)